Esempio n. 1
0
    def make_minibatch(self, valid_anchors):
        with tf.variable_scope('rpn_minibatch'):

            # in labels(shape is [N, ]): 1 is positive, 0 is negative, -1 is ignored
            labels, anchor_matched_gtboxes, object_mask = \
                self.rpn_find_positive_negative_samples(valid_anchors)  # [num_of_valid_anchors, ]

            positive_indices = tf.reshape(tf.where(tf.equal(labels, 1.0)), [-1])  # use labels is same as object_mask

            num_of_positives = tf.minimum(tf.shape(positive_indices)[0],
                                          tf.cast(self.rpn_mini_batch_size * self.rpn_positives_ratio, tf.int32))

            # num of positives <= minibatch_size * 0.5
            positive_indices = tf.random_shuffle(positive_indices)
            positive_indices = tf.slice(positive_indices, begin=[0], size=[num_of_positives])
            # positive_anchors = tf.gather(self.anchors, positive_indices)

            negative_indices = tf.reshape(tf.where(tf.equal(labels, 0.0)), [-1])
            num_of_negatives = tf.minimum(self.rpn_mini_batch_size - num_of_positives,
                                          tf.shape(negative_indices)[0])

            negative_indices = tf.random_shuffle(negative_indices)
            negative_indices = tf.slice(negative_indices, begin=[0], size=[num_of_negatives])
            # negative_anchors = tf.gather(self.anchors, negative_indices)

            minibatch_indices = tf.concat([positive_indices, negative_indices], axis=0)
            minibatch_indices = tf.random_shuffle(minibatch_indices)

            minibatch_anchor_matched_gtboxes = tf.gather(anchor_matched_gtboxes, minibatch_indices)
            object_mask = tf.gather(object_mask, minibatch_indices)
            labels = tf.cast(tf.gather(labels, minibatch_indices), tf.int32)
            labels_one_hot = tf.one_hot(labels, depth=2)
            return minibatch_indices, minibatch_anchor_matched_gtboxes, object_mask, labels_one_hot
Esempio n. 2
0
    def __init__(self, tensors: List[tf.Tensor], cluster_indexes: tf.Tensor, n_splits, seed, train_sampling=1.0,
                 test_sampling=1.0):
        size = tensors[0].shape[0].value
        self.seed = seed
        clustered_index = self.cluster_pages(cluster_indexes)
        index_len = tf.shape(clustered_index)[0]
        assert_op = tf.assert_equal(index_len, size, message='n_pages is not equals to size of clustered index')
        with tf.control_dependencies([assert_op]):
            split_nitems = int(round(size / n_splits))
            split_size = [split_nitems] * n_splits
            split_size[-1] = size - (n_splits - 1) * split_nitems
            splits = tf.split(clustered_index, split_size)
            complements = [tf.random_shuffle(tf.concat(splits[:i] + splits[i + 1:], axis=0), seed) for i in
                           range(n_splits)]
            splits = [tf.random_shuffle(split, seed) for split in splits]

        def mk_name(prefix, tensor):
            return prefix + '_' + tensor.name[:-2]

        def prepare_split(i):
            test_size = split_size[i]
            train_size = size - test_size
            test_sampled_size = int(round(test_size * test_sampling))
            train_sampled_size = int(round(train_size * train_sampling))
            test_idx = splits[i][:test_sampled_size]
            train_idx = complements[i][:train_sampled_size]
            test_set = [tf.gather(tensor, test_idx, name=mk_name('test', tensor)) for tensor in tensors]
            tran_set = [tf.gather(tensor, train_idx, name=mk_name('train', tensor)) for tensor in tensors]
            return Split(test_set, tran_set, test_sampled_size, train_sampled_size)

        self.splits = [prepare_split(i) for i in range(n_splits)]
    def fast_rcnn_minibatch(self, reference_boxes):
        with tf.variable_scope('fast_rcnn_minibatch'):

            reference_boxes_mattached_gtboxes, object_mask, label = \
                self.fast_rcnn_find_positive_negative_samples(reference_boxes)

            positive_indices = tf.reshape(tf.where(tf.not_equal(object_mask, 0.)), [-1])

            num_of_positives = tf.minimum(tf.shape(positive_indices)[0],
                                          tf.cast(self.fast_rcnn_minibatch_size*self.fast_rcnn_positives_ratio, tf.int32))

            positive_indices = tf.random_shuffle(positive_indices)
            positive_indices = tf.slice(positive_indices, begin=[0], size=[num_of_positives])

            negative_indices = tf.reshape(tf.where(tf.equal(object_mask, 0.)), [-1])
            num_of_negatives = tf.minimum(tf.shape(negative_indices)[0],
                                          self.fast_rcnn_minibatch_size - num_of_positives)

            negative_indices = tf.random_shuffle(negative_indices)
            negative_indices = tf.slice(negative_indices, begin=[0], size=[num_of_negatives])

            minibatch_indices = tf.concat([positive_indices, negative_indices], axis=0)
            minibatch_indices = tf.random_shuffle(minibatch_indices)

            minibatch_reference_boxes_mattached_gtboxes = tf.gather(reference_boxes_mattached_gtboxes,
                                                                    minibatch_indices)
            object_mask = tf.gather(object_mask, minibatch_indices)
            label = tf.gather(label, minibatch_indices)
            label_one_hot = tf.one_hot(label, self.num_classes + 1)

            return minibatch_indices, minibatch_reference_boxes_mattached_gtboxes, object_mask, label_one_hot
def cifar_filename_queue(filename_list):
    # convert the list to a tensor
    string_tensor = tf.convert_to_tensor(filename_list, dtype=tf.string)
    # randomize the tensor
    tf.random_shuffle(string_tensor)
    # create the queue
    fq = tf.FIFOQueue(capacity=10, dtypes=tf.string)
    # create our enqueue_op for this q
    fq_enqueue_op = fq.enqueue_many([string_tensor])
    # create a QueueRunner and add to queue runner list
    # we only need one thread for this simple queue
    tf.train.add_queue_runner(tf.train.QueueRunner(fq, [fq_enqueue_op] * 1))
    return fq
Esempio n. 5
0
  def subsample_indicator(indicator, num_samples):
    """Subsample indicator vector.

    Given a boolean indicator vector with M elements set to `True`, the function
    assigns all but `num_samples` of these previously `True` elements to
    `False`. If `num_samples` is greater than M, the original indicator vector
    is returned.

    Args:
      indicator: a 1-dimensional boolean tensor indicating which elements
        are allowed to be sampled and which are not.
      num_samples: int32 scalar tensor

    Returns:
      a boolean tensor with the same shape as input (indicator) tensor
    """
    indices = tf.where(indicator)
    indices = tf.random_shuffle(indices)
    indices = tf.reshape(indices, [-1])

    num_samples = tf.minimum(tf.size(indices), num_samples)
    selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))

    selected_indicator = ops.indices_to_dense_vector(selected_indices,
                                                     tf.shape(indicator)[0])

    return tf.equal(selected_indicator, 1)
Esempio n. 6
0
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
  """Gets a random scale value.

  Args:
    min_scale_factor: Minimum scale value.
    max_scale_factor: Maximum scale value.
    step_size: The step size from minimum to maximum value.

  Returns:
    A random scale value selected between minimum and maximum value.

  Raises:
    ValueError: min_scale_factor has unexpected value.
  """
  if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
    raise ValueError('Unexpected value of min_scale_factor.')

  if min_scale_factor == max_scale_factor:
    return tf.cast(min_scale_factor, tf.float32)

  # When step_size = 0, we sample the value uniformly from [min, max).
  if step_size == 0:
    return tf.random_uniform([1],
                             minval=min_scale_factor,
                             maxval=max_scale_factor)

  # When step_size != 0, we randomly select one discrete value from [min, max].
  num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
  scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
  shuffled_scale_factors = tf.random_shuffle(scale_factors)
  return shuffled_scale_factors[0]
Esempio n. 7
0
def get_svtcn_indices(seq_len, batch_size, num_views):
  """Gets a random window of contiguous time indices from a sequence.

  Args:
    seq_len: Int, number of timesteps in the image sequence.
    batch_size: Int, size of the batch to construct.
    num_views: Int, the number of simultaneous viewpoints at each
      timestep in the dataset.

  Returns:
    time_indices: 1-D Int `Tensor` with size [batch_size], holding the
      timestep for each batch image.
    view_indices: 1-D Int `Tensor` with size [batch_size], holding the
      view for each batch image. This is consistent across the batch.
  """
  # Get anchor, positive time indices.
  def f1():
    # Choose a random contiguous range from within the sequence.
    range_min = tf.random_shuffle(tf.range(seq_len-batch_size))[0]
    range_max = range_min+batch_size
    return tf.range(range_min, range_max)
  def f2():
    # Consider the full sequence.
    return tf.range(seq_len)
  time_indices = tf.cond(tf.greater(seq_len, batch_size), f1, f2)
  # Get opposing anchor, positive view indices.
  random_view = tf.random_shuffle(tf.range(num_views))[0]
  view_indices = tf.tile([random_view], (batch_size,))
  return time_indices, view_indices
Esempio n. 8
0
    def _build_graph(self):
        """Construct tensorflow nodes for round of clustering"""
        # N.B. without tf.Variable, makes awesome glitchy clustered images
        self.centroids_in = tf.Variable(tf.slice(tf.random_shuffle(self.arr),
                                     [0, 0], [self.k, -1]), name="centroids_in")
        # tiled should be shape(self.n_pixels, self.k, size_data = 2 + self.channels)
        tiled_pix = tf.tile(tf.expand_dims(self.arr, 1),
                            multiples=[1, self.k, 1], name="tiled_pix")

        # no need to take square root b/c positive reals and sqrt are isomorphic
        def radical_euclidean_dist(x, y):
            """Takes in 2 tensors and returns euclidean distance radical, i.e. dist**2"""
            with tf.name_scope("radical_euclidean"):
                return tf.square(tf.sub(x, y))

        # should be shape(self.n_pixels, self.k)
        distances = tf.reduce_sum(radical_euclidean_dist(tiled_pix, self.centroids_in),
                                  reduction_indices=2, name="distances")
        # should be shape(self.n_pixels)
        nearest = tf.to_int32(tf.argmin(distances, 1), name="nearest")

        # should be list of len self.k with tensors of shape(size_cluster, size_data)
        self.clusters = tf.dynamic_partition(self.arr, nearest, self.k)
        # should be shape(self.k, size_data)
        self.centroids = tf.pack([tf.reduce_mean(cluster, 0) for cluster in self.clusters],
            name="centroids_out")
        self.update_roids = tf.assign(self.centroids_in, self.centroids)
Esempio n. 9
0
def scheduled_sample_count(ground_truth_x,
                           generated_x,
                           batch_size,
                           scheduled_sample_var):
  """Sample batch with specified mix of groundtruth and generated data points.

  Args:
    ground_truth_x: tensor of ground-truth data points.
    generated_x: tensor of generated data points.
    batch_size: batch size
    scheduled_sample_var: number of ground-truth examples to include in batch.
  Returns:
    New batch with num_ground_truth sampled from ground_truth_x and the rest
    from generated_x.
  """
  num_ground_truth = scheduled_sample_var
  idx = tf.random_shuffle(tf.range(batch_size))
  ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
  generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size))

  ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
  generated_examps = tf.gather(generated_x, generated_idx)

  output = tf.dynamic_stitch([ground_truth_idx, generated_idx],
                             [ground_truth_examps, generated_examps])
  # if batch size is known set it.
  if isinstance(batch_size, int):
    output.set_shape([batch_size] + common_layers.shape_list(output)[1:])
  return output
Esempio n. 10
0
def MiniminibatchLayer(name, n_in, dim_b, dim_c, group_size, inputs):
    inputs = tf.random_shuffle(inputs)
    inputs = tf.reshape(inputs, [-1, group_size, n_in])
    def f(a,x):
        return MinibatchLayer(name, n_in, dim_b, dim_c, x)
    outputs = tf.scan(f, inputs)
    return tf.reshape(outputs, [-1, n_in+dim_b])
    def _add_gtboxes_as_first_stage_proposals(self, first_stage_proposals, first_stage_scores, gtboxes):

        # 1. jitter gtboxes
        ws = gtboxes[:, 2]
        hs = gtboxes[:, 3]
        thetas = gtboxes[:, 4]

        hs_offset = (tf.random_normal(shape=tf.shape(hs)) - 0.5)*0.1*hs
        ws_offset = (tf.random_normal(shape=tf.shape(ws)) - 0.5)*0.1*ws
        thetas_offset = (tf.random_normal(shape=tf.shape(thetas)) - 0.5)*0.1*thetas
        hs = hs + hs_offset
        ws = ws + ws_offset
        thetas = thetas + thetas_offset

        new_boxes = tf.transpose(tf.stack([gtboxes[:, 0], gtboxes[:, 1], ws, hs, thetas], axis=0))

        # 2. get needed added gtboxes
        num_needed_add = tf.minimum(tf.cast(cfgs.FAST_RCNN_MINIBATCH_SIZE*cfgs.FAST_RCNN_POSITIVE_RATE*0.5, tf.int32),
                                    tf.shape(gtboxes)[0])
        added_boxes_indices = tf.random_shuffle(tf.range(start=0, limit=tf.shape(new_boxes)[0]))
        added_boxes_indices = tf.slice(added_boxes_indices, begin=[0], size=[num_needed_add])
        added_boxes = tf.gather(new_boxes, added_boxes_indices)

        # 3. add them
        all_boxes = tf.concat([first_stage_proposals, added_boxes], axis=0)
        all_scores = tf.concat([first_stage_scores,  tf.ones(shape=[tf.shape(added_boxes)[0]])*0.95], axis=0)
        return all_boxes, all_scores
Esempio n. 12
0
 def disable_some_fgs():
     # We want to delete a randomly-selected subset of fg_inds of
     # size `fg_inds.shape[0] - max_fg`.
     # We shuffle along the dimension 0 and then we get the first
     # num_fg_inds - max_fg indices and we disable them.
     shuffled_inds = tf.random_shuffle(fg_inds, seed=self._seed)
     disable_place = (tf.shape(fg_inds)[0] - max_fg)
     # This function should never run if num_fg_inds <= max_fg, so we
     # add an assertion to catch the wrong behaviour if it happens.
     integrity_assertion = tf.assert_positive(
         disable_place,
         message="disable_place in disable_some_fgs is negative."
     )
     with tf.control_dependencies([integrity_assertion]):
         disable_inds = shuffled_inds[:disable_place]
     is_disabled = tf.sparse_to_dense(
         sparse_indices=disable_inds,
         sparse_values=True, default_value=False,
         output_shape=tf.cast(proposals_label_shape, tf.int64),
         # We are shuffling the indices, so they may not be ordered.
         validate_indices=False
     )
     return tf.where(
         condition=is_disabled,
         # We set it to -label for debugging purposes.
         x=tf.negative(proposals_label),
         y=proposals_label
     )
 def generate_one(d):
   seed = stream()
   fn = lambda _: tf.random_shuffle(tf.range(d), seed=seed)
   return tf.map_fn(
       fn,
       sample_range,
       parallel_iterations=1 if seed is not None else 10)
Esempio n. 14
0
 def __init__(self, config):
     paths, meta = Input._collect(config.path)
     self.dimension_count = meta['dimension_count']
     self.sample_count = meta['sample_count']
     self.batch_size = config.get('batch_size', 1)
     if self.sample_count % self.batch_size > 0:
         raise Exception(
             ('expected the number of samples ({}) to be ' +
              'divisible by the batch size ({})').format(self.sample_count,
                                                         self.batch_size))
     with tf.variable_scope('state'):
         self.state = State()
     with tf.variable_scope('source'):
         paths = tf.Variable(paths, name='paths', dtype=tf.string,
                             trainable=False)
         queue = tf.FIFOQueue(meta['path_count'], [tf.string])
         enqueue = queue.enqueue_many([tf.random_shuffle(paths)])
         tf.train.add_queue_runner(tf.train.QueueRunner(queue, [enqueue]))
         _, record = tf.TFRecordReader().read(queue)
     with tf.variable_scope('x'):
         features = tf.parse_single_example(record, {
             'data': tf.VarLenFeature(tf.float32),
         })
         data = tf.sparse_tensor_to_dense(features['data'])
         if self.batch_size == 1:
             self.x = tf.reshape(data, [1, -1, self.dimension_count])
         else:
             x = tf.reshape(data, [-1, self.dimension_count])
             _, outputs = tf.contrib.training.bucket_by_sequence_length(
                 tf.shape(x)[0], [x], self.batch_size, config.buckets,
                 dynamic_pad=True)
             self.x = outputs[0]
     with tf.variable_scope('y'):
         self.y = tf.pad(self.x[:, 1:, :], [[0, 0], [0, 1], [0, 0]])
Esempio n. 15
0
    def build(self, input_shape):
        input_dim = input_shape[1]

        #Per tree
        N_DECISION = (2 ** (self.n_depth)) - 1  # Number of decision nodes
        N_LEAF  = 2 ** (self.n_depth + 1)  # Number of leaf nodes

        if self.randomize_training:
            #Construct a mask that lets N trees get trained per minibatch
            train_mask = np.zeros(self.n_trees, dtype=np.float32)
            for i in xrange(self.randomize_training):
                train_mask[i] = 1
            self.random_mask = tf.random_shuffle(tf.constant(train_mask))

        self.w_d_ensemble = []
        self.w_l_ensemble = []
        self.trainable_weights = []
        for i in xrange(self.n_trees):
            decision_weights = self.d_init((input_dim, N_DECISION), name=self.name+"_tree"+i+"_dW")
            leaf_distributions = self.l_init((N_LEAF, self.output_classes), name=self.name+"_tree"+i+"_lW")

            self.trainable_weights.append(decision_weights)
            self.trainable_weights.append(leaf_distributions)

            if self.randomize_training:
                do_gradient = self.random_mask[i]
                no_gradient = 1 - do_gradient
                
                #This should always allow inference, but block gradient flow when do_gradient = 0 
                decision_weights = do_gradient * decision_weights + no_gradient * tf.stop_gradient(decision_weights)

                leaf_distributions = do_gradient * leaf_distributions + no_gradient * tf.stop_gradient(leaf_distributions)

            self.w_d_ensemble.append(decision_weights)
            self.w_l_ensemble.append(leaf_distributions)
Esempio n. 16
0
def PreDiscriminator(inputs):
    outputs = []
    for n_rows in [784]:
        output = tf.reshape(inputs, [-1, n_rows, 1])
        output = tf.gather(output, tf.random_shuffle(tf.range((784/n_rows)*BATCH_SIZE))[:BATCH_SIZE])
        output = lib.ops.gru.GRU('Discriminator.GRU_{}'.format(1), 1, 256, output)
        outputs.append(output)
    return outputs
 def generate_one(d):
   seed[0] = distributions_util.gen_new_seed(
       seed[0], salt='mcmc_sample_halton_sequence_4')
   fn = lambda _: tf.random_shuffle(tf.range(d), seed=seed[0])
   return tf.map_fn(
       fn,
       sample_range,
       parallel_iterations=1 if seed[0] is not None else 10)
Esempio n. 18
0
    def sample_fg_bg(iou):
        fg_mask = tf.reduce_max(iou, axis=1) >= cfg.FRCNN.FG_THRESH

        fg_inds = tf.reshape(tf.where(fg_mask), [-1])
        num_fg = tf.minimum(int(
            cfg.FRCNN.BATCH_PER_IM * cfg.FRCNN.FG_RATIO),
            tf.size(fg_inds), name='num_fg')
        fg_inds = tf.random_shuffle(fg_inds)[:num_fg]

        bg_inds = tf.reshape(tf.where(tf.logical_not(fg_mask)), [-1])
        num_bg = tf.minimum(
            cfg.FRCNN.BATCH_PER_IM - num_fg,
            tf.size(bg_inds), name='num_bg')
        bg_inds = tf.random_shuffle(bg_inds)[:num_bg]

        add_moving_summary(num_fg, num_bg)
        return fg_inds, bg_inds
Esempio n. 19
0
    def get_random_init(sess, batch):  # returns (pseudo) random parameters for the algorithm
        points = tf.placeholder(tf.float32, shape=[n, p, 1])
        pi_init = sess.run(tf.random_uniform([1, k]), feed_dict={points: batch})
        mu_init = sess.run(tf.slice(tf.random_shuffle(points), [0, 0, 0], [k, p, 1]), feed_dict={points: batch})
        seed = tf.random_uniform([k, p, p])
        sigma_init = sess.run(tf.batch_matmul(seed, tf.transpose(seed, [0, 2, 1])), feed_dict={points: batch})

        return pi_init, mu_init, sigma_init
Esempio n. 20
0
def get_sparse_subset_tensor(shape, subset_sizes,
                             initializer=tf.random_normal_initializer(
                                stddev=0.15)):
    """Gets the required bits and pieces for a sparse tensor bilinear product
    with random subsets of the inputs (as opposed to a totally randomly sparse
    tensor, this will have a kind of rectangular structure).

    Args:
        shape: the shape of the tensor. We can only make this work for
            3-tensors so len(shape) should be 3.
        subset_sizes: the number of random elements to take from each of the
            inputs. Should be a sequence of length 2.
        initializer: the initialiser to use for the elements of the tensor.

    Returns:
        (tensor, idcs_a, idcs_b): all that we need to do the bilinear product
            later -- the tensor elements as a dense matrix and the indices
            representing the indices into the input vectors.
    """
    # first let's make sure the inputs make sense
    if len(shape) != 3:
        raise ValueError(
            'Can do this with 3-way tensors, got shape {}'.format(shape))
    if len(subset_sizes) != 2:
        raise ValueError('subset_sizes needs to be of length two')
    if subset_sizes[0] > shape[0]:
        raise ValueError('first subset size greater than specified dimension: '
                         '{} > {}'.format(subset_sizes[0], shape[0]))
    if subset_sizes[2] > shape[1]:
        raise ValueError(
            'second subset size greater than specified dimension: '
            '{} > {}'.format(subset_sizes[2], shape[1]))
    with tf.name_scope(name):
        # now we need to make some random indices
        # potentially kinda gross for a little while
        a_idcs = tf.stack([tf.random_shuffle(tf.range(shape[0]))
                          for _ in range(shape[1])])
        b_idcs = tf.stack([tf.random_shuffle(tf.range(shape[2]))
                          for _ in range(shape[1])])
        # if we eval these they will be random every time
        # so we use them as the initialiser to a new variable
        a_idcs = tf.get_variable('a_idcs',
                                 initializer=a_idcs[:, :subset_sizes[0]])
        b_idcs = tf.get_variable('b_idcs',
                                 initializer=b_idcs[:, :subset_sizes[1]])
Esempio n. 21
0
def init_k_means(samples, num_clusters, num_samples_per_cluster):
    sample_indices = tf.random_shuffle(tf.range(0,num_samples_per_cluster*num_clusters))
    #Start by choosing num_cluster random points
    start = [0,]
    size = [num_clusters,]
    size[0] = num_clusters
    centroids = tf.slice(sample_indices, start, size)
    chosen_centroids = tf.gather(samples, centroids)
    return chosen_centroids
Esempio n. 22
0
 def prepare_split(i):
     idx = tf.random_shuffle(tf.range(0, n_pages, dtype=tf.int32), seed + i)
     train_tensors = [tf.gather(tensor, idx, name=mk_name('shfl', tensor)) for tensor in tensors]
     if test_sampling < 1.0:
         sampled_idx = idx[:n_pages]
         test_tensors = [tf.gather(tensor, sampled_idx, name=mk_name('shfl_test', tensor)) for tensor in tensors]
     else:
         test_tensors = train_tensors
     return Split(test_tensors, train_tensors, n_pages, total_pages)
Esempio n. 23
0
 def get_ensemble_idx_info(self):
   if self.bayesian_config is not False:
     ensemble_idxs = tf.random_shuffle(tf.range(self.transition_predictor.ensemble_size))
     transition_ensemble_sample_n = self.transition_predictor.eval_sample_count
     reward_ensemble_sample_n = self.reward_predictor.eval_sample_count
     ensemble_idxs = ensemble_idxs[:transition_ensemble_sample_n]
     return ensemble_idxs, transition_ensemble_sample_n, reward_ensemble_sample_n
   else:
     return None, 1, 1
Esempio n. 24
0
def choose_random_centroids(samples, n_clusters):
    n_samples = tf.shape(samples)[0]
    random_indices = tf.random_shuffle(tf.range(0, n_samples))
    begin = [0,]
    size = [n_clusters,]
    size[0] = n_clusters
    centroid_indices = tf.slice(random_indices, begin, size)
    initial_centroids = tf.gather(samples, centroid_indices)
    return initial_centroids
Esempio n. 25
0
  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    spec = self._context_spec
    context_range = self._context_range
    if isinstance(context_range[0], (int, float)):
      contexts = tf.random_uniform(
          shape=[
              batch_size,
          ] + spec.shape.as_list(),
          minval=context_range[0],
          maxval=context_range[1],
          dtype=spec.dtype)
    elif isinstance(context_range[0], (list, tuple, np.ndarray)):
      assert len(spec.shape.as_list()) == 1
      assert spec.shape.as_list()[0] == len(context_range[0])
      assert spec.shape.as_list()[0] == len(context_range[1])
      contexts = tf.concat(
          [
              tf.random_uniform(
                  shape=[
                      batch_size, 1,
                  ] + spec.shape.as_list()[1:],
                  minval=context_range[0][i],
                  maxval=context_range[1][i],
                  dtype=spec.dtype) for i in range(spec.shape.as_list()[0])
          ],
          axis=1)
    else: raise NotImplementedError(context_range)
    self._validate_contexts(contexts)
    if 'sampler_fn' in kwargs:
      other_contexts = kwargs['sampler_fn']()
    else:
      other_contexts = contexts
    state, next_state = kwargs['state'], kwargs['next_state']
    if state is not None and next_state is not None:
      my_context_range = (np.array(context_range[1]) - np.array(context_range[0])) / 2 * np.ones(spec.shape.as_list())
      contexts = tf.concat(
          [0.1 * my_context_range[:self._k] *
           tf.random_normal(tf.shape(state[:, :self._k]), dtype=state.dtype) +
           tf.random_shuffle(state[:, :self._k]) - state[:, :self._k],
           other_contexts[:, self._k:]], 1)
      #contexts = tf.Print(contexts,
      #                    [contexts, tf.reduce_max(contexts, 0),
      #                     tf.reduce_min(state, 0), tf.reduce_max(state, 0)], 'contexts', summarize=15)
      next_contexts = tf.concat( #LALA
          [state[:, :self._k] + contexts[:, :self._k] - next_state[:, :self._k],
           other_contexts[:, self._k:]], 1)
      next_contexts = contexts  #LALA cosine
    else:
      next_contexts = contexts
    return tf.stop_gradient(contexts), tf.stop_gradient(next_contexts)
Esempio n. 26
0
def tf_fastfood_transform(in_x, dd, DD, use_get=False, use_C=False):
    '''Transform from d to D. Pads as necessary.

    For now: assume dd and DD are known in python.'''

    # Tensor d and D
    #assert_D_big = tf.assert_greater_equal(DD, dd, message='d cannot be larger than D')
    #with tf.control_dependencies([assert_D_big]):
    #    ll = tf.cast(tf.round(tf.log(tf.to_float(DD)) / np.log(2)), 'int32')
    #    LL = tf.pow(2, ll)

    # Python d and D
    assert isinstance(dd, int), 'd should be int'
    assert isinstance(DD, int), 'D should be int'
    assert DD >= dd, 'd cannot be larger than D'
    assert dd > 0, 'd and D must be positive'

    ll = int(np.ceil(np.log(DD) / np.log(2)))
    LL = 2 ** ll

    # Make vars
    init_BB = tf.to_float(tf.random_uniform((LL,), 0, 2, dtype='int32')) * 2 - 1
    init_Pi = tf.random_shuffle(tf.range(LL))
    init_GG = tf.random_normal((LL,))
    init_divisor = lambda GG: tf.sqrt(LL * tf.reduce_sum(tf.pow(GG.initialized_value(), 2)))
    if use_get:
        BB = tf.get_variable('B', initializer=init_BB, trainable=False)
        Pi = tf.get_variable('Pi', initializer=init_Pi, trainable=False)
        GG = tf.get_variable('G', initializer=init_GG, trainable=False)
        divisor = tf.get_variable('divisor', initializer=init_divisor(GG), trainable=False)
    else:
        BB = tf.Variable(init_BB, name='B', trainable=False)
        Pi = tf.Variable(init_Pi, name='Pi', trainable=False)
        GG = tf.Variable(init_GG, name='G', trainable=False)
        divisor = tf.Variable(init_divisor(GG), name='divisor', trainable=False)

    fastfood_vars = [BB, Pi, GG, divisor]

    # Implement transform
    dd_pad = tf.pad(in_x, [[0, LL - dd]])
    mul_1 = tf.multiply(BB, dd_pad)
    if use_C:
        mul_2 = tf_fast_walsh_hadamard(mul_1, 0, method='c', normalize=True)
    else:
        mul_2 = tf_fast_walsh_hadamard(mul_1, 0, method='two', normalize=False)
    mul_3 = tf.gather(mul_2, Pi)
    mul_4 = tf.multiply(mul_3, GG)
    if use_C:
        mul_5 = tf_fast_walsh_hadamard(mul_4, 0, method='c', normalize=True)
        print '\nWARNING: check normalization on this next line more carefully\n'
        ret = tf.divide(tf.slice(mul_5, [0], [DD]), divisor * np.sqrt(float(DD) / LL / ll))
    else:
        mul_5 = tf_fast_walsh_hadamard(mul_4, 0, method='two', normalize=False)
        ret = tf.divide(tf.slice(mul_5, [0], [DD]), divisor * np.sqrt(float(DD) / LL))

    return fastfood_vars, ret
Esempio n. 27
0
def choose_random_centroids(samples, n_clusters, seed):
    # Step 0: Initialisation: Select `n_clusters` number of random points
    n_samples = tf.shape(samples)[0]
    random_indices = tf.random_shuffle(tf.range(0, n_samples), seed=seed)
    begin = [0,]
    size = [n_clusters,]
    # size[0] = n_clusters
    centroid_indices = tf.slice(random_indices, begin, size)
    initial_centroids = tf.gather(samples, centroid_indices)
    return initial_centroids
Esempio n. 28
0
  def dequeue_batch():
    with tf.name_scope("sample_n_per_batch/dequeue/"):
      entries = []
      for q in queues:
        entries.append(q.dequeue_many(samples_per_class))

      flat_batch = [tf.concat(x, 0) for x in zip(*entries)]
      idx = tf.random_shuffle(tf.range(batch_size))
      flat_batch = [tf.gather(f, idx, axis=0) for f in flat_batch]
      return nest.pack_sequence_as(batch, flat_batch)
Esempio n. 29
0
def random_column(columns):
  """Zeros out all except one of `columns`.

  Used for rounds with global drop path.

  Args:
    columns: the columns of a fractal block to be selected from.
  """
  num_columns = tensor_shape(columns)[0]
  mask = tf.random_shuffle([True]+[False]*(num_columns-1))
  return apply_mask(mask, columns)* num_columns
def preprocess_for_train(image,
                         output_height,
                         output_width,
                         mean_vals,
                         out_dim_scale=1.0):
  """Preprocesses the given image for training.

  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.

  Returns:
    A preprocessed image.
  """
  num_channels = image.get_shape().as_list()[-1]
  image = tf.image.resize_images(image, [_RESIZE_HT, _RESIZE_WD])
  # compute the crop size
  base_size = float(min(_RESIZE_HT, _RESIZE_WD))
  scale_ratio_h = tf.random_shuffle(tf.constant(_SCALE_RATIOS))[0]
  scale_ratio_w = tf.random_shuffle(tf.constant(_SCALE_RATIOS))[0]
  image = _random_crop([image],
      tf.cast(output_height * scale_ratio_h, tf.int32),
      tf.cast(output_width * scale_ratio_w, tf.int32))[0]
  image = tf.image.resize_images(
    image, [int(output_height * out_dim_scale),
            int(output_width * out_dim_scale)])
  image = tf.to_float(image)
  image = tf.image.random_flip_left_right(image)
  image.set_shape([int(output_height * out_dim_scale),
                   int(output_width * out_dim_scale), num_channels])
  image = _mean_image_subtraction(image, mean_vals)
  image = tf.expand_dims(image, 0) # 1x... image, to be consistent with eval
  # Gets logged multiple times with NetVLAD, so gives an error.
  # I'm anyway logging from the train code, so removing it here.
  # tf.image_summary('final_distorted_image',
  #     tf.expand_dims(image / 128.0, 0))
  return image
Esempio n. 31
0
# -*- coding:utf-8 -*-
# @Time		:2018/9/23 下午3:43
# @Author	:Coast Cao

import tensorflow as tf

# Create a tensor of shape [2, 3] consisting of random normal values, with mean
# -1 and standard deviation 4.
norm = tf.random_normal([2, 3], mean=-1, stddev=4)

# Shuffle the first dimension of a tensor
c = tf.constant([[1, 2], [3, 4], [5, 6]])
shuff = tf.random_shuffle(c)

# Each time we run these ops, different results are generated
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))

# Set an op-level seed to generate repeatable sequences across sessions.
norm = tf.random_normal([2, 3], seed=1234)
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))
Esempio n. 32
0
def train():

    with tf.Graph().as_default(), tf.device('/cpu:0'):

        num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
        global_step = slim.get_or_create_global_step()
        lr = warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
        tf.summary.scalar('lr', lr)

        with tf.name_scope('get_batch'):
            if cfgs.IMAGE_PYRAMID:
                shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
                shortside_len = tf.random_shuffle(shortside_len_list)[0]

            else:
                shortside_len = cfgs.IMG_SHORT_SIDE_LEN

            img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
                next_batch(dataset_name=cfgs.DATASET_NAME,
                           batch_size=cfgs.BATCH_SIZE * num_gpu,
                           shortside_len=shortside_len,
                           is_training=True)

        optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
        r3det = build_whole_network_r3det_efficientnet.DetectionNetwork(
            base_network_name=cfgs.NET_NAME, is_training=True)

        # data processing
        inputs_list = []
        for i in range(num_gpu):
            img = tf.expand_dims(img_batch[i], axis=0)

            if cfgs.NET_NAME in [
                    'resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d'
            ]:
                img = img / tf.constant([cfgs.PIXEL_STD])

            gtboxes_and_label_r = tf.py_func(backward_convert,
                                             inp=[gtboxes_and_label_batch[i]],
                                             Tout=tf.float32)
            gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])

            gtboxes_and_label_h = get_horizen_minAreaRectangle(
                gtboxes_and_label_batch[i])
            gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])

            num_objects = num_objects_batch[i]
            num_objects = tf.cast(tf.reshape(num_objects, [
                -1,
            ]), tf.float32)

            img_h = img_h_batch[i]
            img_w = img_w_batch[i]

            inputs_list.append([
                img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects,
                img_h, img_w
            ])

        tower_grads = []
        biases_regularizer = tf.no_regularizer
        weights_regularizer = tf.contrib.layers.l2_regularizer(
            cfgs.WEIGHT_DECAY)

        total_loss_dict = {
            'cls_loss': tf.constant(0., tf.float32),
            'reg_loss': tf.constant(0., tf.float32),
            'refine_cls_loss': tf.constant(0., tf.float32),
            'refine_reg_loss': tf.constant(0., tf.float32),
            'refine_cls_loss_stage3': tf.constant(0., tf.float32),
            'refine_reg_loss_stage3': tf.constant(0., tf.float32),
            'total_losses': tf.constant(0., tf.float32),
        }

        if cfgs.USE_SUPERVISED_MASK:
            total_loss_dict['mask_loss'] = tf.constant(0., tf.float32)

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(num_gpu):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i):
                        with slim.arg_scope(
                            [slim.model_variable, slim.variable],
                                device='/device:CPU:0'):
                            with slim.arg_scope(
                                [
                                    slim.conv2d, slim.conv2d_in_plane,
                                    slim.conv2d_transpose,
                                    slim.separable_conv2d, slim.fully_connected
                                ],
                                    weights_regularizer=weights_regularizer,
                                    biases_regularizer=biases_regularizer,
                                    biases_initializer=tf.constant_initializer(
                                        0.0)):

                                gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(
                                    get_gtboxes_and_label,
                                    inp=[
                                        inputs_list[i][1], inputs_list[i][2],
                                        inputs_list[i][3]
                                    ],
                                    Tout=[tf.float32, tf.float32])
                                gtboxes_and_label_h = tf.reshape(
                                    gtboxes_and_label_h, [-1, 5])
                                gtboxes_and_label_r = tf.reshape(
                                    gtboxes_and_label_r, [-1, 6])

                                img = inputs_list[i][0]
                                img_shape = inputs_list[i][-2:]
                                img = tf.image.crop_to_bounding_box(
                                    image=img,
                                    offset_height=0,
                                    offset_width=0,
                                    target_height=tf.cast(
                                        img_shape[0], tf.int32),
                                    target_width=tf.cast(
                                        img_shape[1], tf.int32))

                                outputs = r3det.build_whole_detection_network(
                                    input_img_batch=img,
                                    gtboxes_batch_h=gtboxes_and_label_h,
                                    gtboxes_batch_r=gtboxes_and_label_r,
                                    gpu_id=i)
                                gtboxes_in_img_h = draw_boxes_with_categories(
                                    img_batch=img,
                                    boxes=gtboxes_and_label_h[:, :-1],
                                    labels=gtboxes_and_label_h[:, -1],
                                    method=0)
                                gtboxes_in_img_r = draw_boxes_with_categories(
                                    img_batch=img,
                                    boxes=gtboxes_and_label_r[:, :-1],
                                    labels=gtboxes_and_label_r[:, -1],
                                    method=1)
                                tf.summary.image(
                                    'Compare/gtboxes_h_gpu:%d' % i,
                                    gtboxes_in_img_h)
                                tf.summary.image(
                                    'Compare/gtboxes_r_gpu:%d' % i,
                                    gtboxes_in_img_r)

                                if cfgs.ADD_BOX_IN_TENSORBOARD:
                                    detections_in_img = draw_boxes_with_categories_and_scores(
                                        img_batch=img,
                                        boxes=outputs[0],
                                        scores=outputs[1],
                                        labels=outputs[2],
                                        method=1)
                                    tf.summary.image(
                                        'Compare/final_detection_gpu:%d' % i,
                                        detections_in_img)

                                loss_dict = outputs[-1]

                                total_losses = 0.0
                                for k in loss_dict.keys():
                                    total_losses += loss_dict[k]
                                    total_loss_dict[
                                        k] += loss_dict[k] / num_gpu

                                total_losses = total_losses / num_gpu
                                total_loss_dict['total_losses'] += total_losses

                                if i == num_gpu - 1:
                                    regularization_losses = tf.get_collection(
                                        tf.GraphKeys.REGULARIZATION_LOSSES)
                                    # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
                                    total_losses = total_losses + tf.add_n(
                                        regularization_losses)

                        tf.get_variable_scope().reuse_variables()
                        grads = optimizer.compute_gradients(total_losses)
                        if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
                            grads = slim.learning.clip_gradient_norms(
                                grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
                        tower_grads.append(grads)

        for k in total_loss_dict.keys():
            tf.summary.scalar('{}/{}'.format(k.split('_')[0], k),
                              total_loss_dict[k])

        if len(tower_grads) > 1:
            grads = sum_gradients(tower_grads)
        else:
            grads = tower_grads[0]

        if cfgs.MUTILPY_BIAS_GRADIENT is not None:
            final_gvs = []
            with tf.variable_scope('Gradient_Mult'):
                for grad, var in grads:
                    scale = 1.
                    if '/biases:' in var.name:
                        scale *= cfgs.MUTILPY_BIAS_GRADIENT
                    if 'conv_new' in var.name:
                        scale *= 3.
                    if not np.allclose(scale, 1.0):
                        grad = tf.multiply(grad, scale)

                    final_gvs.append((grad, var))
            apply_gradient_op = optimizer.apply_gradients(
                final_gvs, global_step=global_step)
        else:
            apply_gradient_op = optimizer.apply_gradients(
                grads, global_step=global_step)

        variable_averages = tf.train.ExponentialMovingAverage(
            0.9999, global_step)
        variables_averages_op = variable_averages.apply(
            tf.trainable_variables())

        train_op = tf.group(apply_gradient_op, variables_averages_op)
        # train_op = optimizer.apply_gradients(final_gvs, global_step=global_step)
        summary_op = tf.summary.merge_all()

        restorer, restore_ckpt = r3det.get_restorer()
        saver = tf.train.Saver(max_to_keep=5)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        tfconfig = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
        tfconfig.gpu_options.allow_growth = True
        with tf.Session(config=tfconfig) as sess:
            sess.run(init_op)

            # sess.run(tf.initialize_all_variables())
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord, sess=sess)

            summary_path = os.path.join(cfgs.SUMMARY_PATH, cfgs.VERSION)
            tools.mkdir(summary_path)
            summary_writer = tf.summary.FileWriter(summary_path,
                                                   graph=sess.graph)

            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            for step in range(cfgs.MAX_ITERATION // num_gpu):
                training_time = time.strftime('%Y-%m-%d %H:%M:%S',
                                              time.localtime(time.time()))

                if step % cfgs.SHOW_TRAIN_INFO_INTE != 0 and step % cfgs.SMRY_ITER != 0:
                    _, global_stepnp = sess.run([train_op, global_step])

                else:
                    if step % cfgs.SHOW_TRAIN_INFO_INTE == 0 and step % cfgs.SMRY_ITER != 0:
                        start = time.time()
                        _, global_stepnp, total_loss_dict_ = \
                            sess.run([train_op, global_step, total_loss_dict])

                        end = time.time()

                        print('***' * 20)
                        print("""%s: global_step:%d  current_step:%d""" %
                              (training_time,
                               (global_stepnp - 1) * num_gpu, step * num_gpu))
                        print("""per_cost_time:%.3fs""" %
                              ((end - start) / num_gpu))
                        loss_str = ''
                        for k in total_loss_dict_.keys():
                            loss_str += '%s:%.3f\n' % (k, total_loss_dict_[k])
                        print(loss_str)

                        if np.isnan(total_loss_dict_['total_losses']):
                            sys.exit(0)

                    else:
                        if step % cfgs.SMRY_ITER == 0:
                            _, global_stepnp, summary_str = sess.run(
                                [train_op, global_step, summary_op])
                            summary_writer.add_summary(
                                summary_str, (global_stepnp - 1) * num_gpu)
                            summary_writer.flush()

                if (step > 0 and step % (cfgs.SAVE_WEIGHTS_INTE // num_gpu)
                        == 0) or (step >= cfgs.MAX_ITERATION // num_gpu - 1):

                    save_dir = os.path.join(cfgs.TRAINED_CKPT, cfgs.VERSION)
                    if not os.path.exists(save_dir):
                        os.mkdir(save_dir)

                    save_ckpt = os.path.join(
                        save_dir, '{}_'.format(cfgs.DATASET_NAME) + str(
                            (global_stepnp - 1) * num_gpu) + 'model.ckpt')
                    saver.save(sess, save_ckpt)
                    print(' weights had been saved')

            coord.request_stop()
            coord.join(threads)
Esempio n. 33
0
def rpn_targets_graph(gt_boxes,
                      gt_cls,
                      anchors,
                      anchors_tag,
                      rpn_train_anchors=None):
    """
    处理单个图像的rpn分类和回归目标
    a)正样本为 IoU>0.7的anchor;负样本为IoU<0.3的anchor; 居中的为中性样本,丢弃
    b)需要保证所有的GT都有anchor对应,即使IoU<0.3;
    c)正负样本比例保持1:1
    :param gt_boxes: GT 边框坐标 [MAX_GT_BOXs, (y1,x1,y2,x2,tag)] ,tag=0 为padding
    :param gt_cls: GT 类别 [MAX_GT_BOXs, 1+1] ;最后一位为tag, tag=0 为padding
    :param anchors: [anchor_num, (y1,x1,y2,x2)]
    :param anchors_tag:[anchor_num] bool类型
    :param rpn_train_anchors: 训练样本数(256)
    :return:
    deltas:[rpn_train_anchors,(dy,dx,dh,dw,tag)]:anchor边框回归目标,tag=1 为正样本,tag=0为padding,tag=-1为负样本
    class_ids:[rpn_train_anchors,1+1]: anchor边框分类,tag=1 为正样本,tag=0为padding,tag=-1为负样本
    indices:[rpn_train_anchors,(indices,tag)]: tag=1 为正样本,tag=0为padding,tag=-1为负样本
    """

    # 获取真正的GT,去除标签位
    gt_boxes = tf_utils.remove_pad(gt_boxes)
    gt_cls = tf_utils.remove_pad(gt_cls)[:, 0]  # [N,1]转[N]

    # 获取有效的anchors
    valid_anchor_indices = tf.where(anchors_tag)[:, 0]  # [valid_anchors_num]
    anchors = tf.gather(anchors, valid_anchor_indices)
    # 计算IoU
    iou = compute_iou(gt_boxes, anchors)
    # print("iou:{}".format(iou))

    # 每个GT对应的IoU最大的anchor是正样本
    gt_iou_argmax = tf.argmax(iou, axis=1)
    positive_gt_indices_1 = tf.range(tf.shape(gt_boxes)[0])  # 索引号就是1..n-1
    positive_anchor_indices_1 = gt_iou_argmax

    # 每个anchors最大iou ,且iou>0.7的为正样本
    anchors_iou_max = tf.reduce_max(iou, axis=0)
    # 正样本索引号(iou>0.7),
    positive_anchor_indices_2 = tf.where(
        anchors_iou_max > 0.7, name='rpn_target_positive_indices')  # [:, 0]
    # 找到正样本对应的GT boxes 索引
    # anchors_iou_argmax = tf.argmax(iou, axis=0)  # 每个anchor最大iou对应的GT 索引 [n]
    anchors_iou_argmax = tf.cond(  # 需要考虑GT个数为0的情况
        tf.greater(tf.shape(gt_boxes)[0], 0),
        true_fn=lambda: tf.argmax(iou, axis=0),
        false_fn=lambda: tf.cast(tf.constant([]), tf.int64))
    positive_gt_indices_2 = tf.gather_nd(anchors_iou_argmax,
                                         positive_anchor_indices_2)

    # 合并两部分正样本
    positive_gt_indices = tf.concat(
        [positive_gt_indices_1,
         tf.cast(positive_gt_indices_2, tf.int32)],
        axis=0,
        name='rpn_gt_boxes_concat')
    positive_anchor_indices = tf.concat(
        [positive_anchor_indices_1, positive_anchor_indices_2[:, 0]],
        axis=0,
        name='rpn_positive_anchors_concat')

    # 根据正负样本比1:1,确定最终的正样本
    positive_num = tf.minimum(
        tf.shape(positive_anchor_indices)[0], int(rpn_train_anchors * 0.9))
    positive_anchor_indices, positive_gt_indices = shuffle_sample(
        [positive_anchor_indices, positive_gt_indices],
        tf.shape(positive_anchor_indices)[0], positive_num)
    # 根据索引选择anchor和GT
    positive_anchors = tf.gather(anchors, positive_anchor_indices)
    positive_gt_boxes = tf.gather(gt_boxes, positive_gt_indices)
    positive_gt_cls = tf.gather(gt_cls, positive_gt_indices)
    # 回归目标计算
    deltas = regress_target(positive_anchors, positive_gt_boxes)

    # 处理负样本
    negative_indices = tf.where(anchors_iou_max < 0.3,
                                name='rpn_target_negative_indices')  # [:, 0]

    # 负样本,保证负样本不超过一半
    negative_num = tf.minimum(rpn_train_anchors - positive_num,
                              tf.shape(negative_indices)[0],
                              name='rpn_target_negative_num')
    # negative_num = tf.minimum(int(rpn_train_anchors * 0.5), negative_num, name='rpn_target_negative_num_2')
    negative_indices = tf.random_shuffle(negative_indices)[:negative_num]
    negative_gt_cls = tf.zeros([negative_num])  # 负样本类别id为0
    negative_deltas = tf.zeros([negative_num, 4])

    # 合并正负样本
    deltas = tf.concat([deltas, negative_deltas],
                       axis=0,
                       name='rpn_target_deltas')
    class_ids = tf.concat([positive_gt_cls, negative_gt_cls],
                          axis=0,
                          name='rpn_target_class_ids')
    indices = tf.concat([positive_anchor_indices, negative_indices[:, 0]],
                        axis=0,
                        name='rpn_train_anchor_indices')

    # indices转换会原始的anchors索引
    indices = tf.gather(valid_anchor_indices,
                        indices,
                        name='map_to_origin_anchor_indices')
    # 计算padding
    deltas, class_ids = tf_utils.pad_list_to_fixed_size(
        [deltas, tf.expand_dims(class_ids, 1)], rpn_train_anchors)
    # 将负样本tag标志改为-1;方便后续处理;
    indices = tf_utils.pad_to_fixed_size_with_negative(
        tf.expand_dims(indices, 1),
        rpn_train_anchors,
        negative_num=negative_num,
        data_type=tf.int64)
    # 其它统计指标
    gt_num = tf.shape(gt_cls)[0]  # GT数
    miss_match_gt_num = gt_num - tf.shape(
        tf.unique(positive_gt_indices)[0])[0]  # 未分配anchor的GT
    rpn_gt_min_max_iou = tf.reduce_min(tf.reduce_max(
        iou, axis=1))  # GT匹配anchor最小的IoU

    return [
        deltas, class_ids, indices,
        tf_utils.scalar_to_1d_tensor(gt_num),
        tf_utils.scalar_to_1d_tensor(positive_num),
        tf_utils.scalar_to_1d_tensor(negative_num),
        tf_utils.scalar_to_1d_tensor(miss_match_gt_num),
        tf_utils.scalar_to_1d_tensor(rpn_gt_min_max_iou)
    ]
Esempio n. 34
0
def label_downsampler(n_labels, true_labels, n_extra_labels):
    lbls = tf.random_shuffle(tf.range(n_labels))[:n_extra_labels]
    lbls = tf.unique(tf.concat([lbls, true_labels], axis=0)).y
    return lambda logits: tf.gather(logits, lbls, axis=-1)
Esempio n. 35
0
        points_x.append(np.random.normal(0.0, 0.6))
        points_y.append(np.random.normal(0.0, 0.6))
    elif np.random.random() > 0.33333:
        points_x.append(np.random.normal(2.0, 0.57))
        points_y.append(np.random.normal(3.0, 0.6))
    else:
        points_x.append(np.random.normal(2.0, 0.33))
        points_y.append(np.random.normal(1.0, 0.2))

# 1000개의 포인트를 numpy array로 생성
points = np.array(np.transpose([points_x, points_y]))

# numpy array를 tensor로 변환
vectors = tf.constant(points)
centroides = tf.Variable(
    tf.slice(tf.random_shuffle(vectors), [0, 0],
             [num_clusters, -1]))  # 중심점 초기화

# 텐서 차원 확장
expanded_vectors = tf.expand_dims(vectors, 0)
expanded_centroides = tf.expand_dims(centroides, 1)

# 거리 계산
diff = tf.subtract(expanded_vectors, expanded_centroides)
distance = tf.reduce_sum(tf.square(diff), 2)
assignments = tf.argmin(distance, 0)

# 중심점 업데이트
means = tf.concat([
    tf.reduce_mean(tf.gather(
        vectors, tf.reshape(tf.where(tf.equal(assignments, c)), [1, -1])),
Esempio n. 36
0
def tensorflow_categorical(count, seed):
    assert count > 0
    arr = [1.] + [.0 for _ in range(count - 1)]
    return tf.random_shuffle(arr, seed)
Esempio n. 37
0
    def postproc_flag(
            self,
            images,
            NOW_SIZE1=256,
            NOW_SIZE2=256,
            seed_random=0,
            curr_batch_size=None,
            with_noise=0,
            noise_level=10,
            with_flip=0,
            is_normal=0,
            eliprep=0,
            thprep=0,
            sub_mean=0,
            mean_path=None,
            color_norm=0,
            size_vary_prep=0,
            with_color_noise=0,
            shape_undefined=0,
            size_minval=0.08,
            sm_full_size=0,  # sm_add
    ):

        if curr_batch_size == None:
            curr_batch_size = self.batch_size

        orig_dtype = images.dtype
        norm = tf.cast(images, tf.float32)

        if eliprep == 1:

            def prep_each(norm_):
                _RESIZE_SIDE_MIN = 256
                _RESIZE_SIDE_MAX = 512

                if self.group == 'train':
                    im = preprocess_image(norm_,
                                          self.crop_size,
                                          self.crop_size,
                                          is_training=True,
                                          resize_side_min=_RESIZE_SIDE_MIN,
                                          resize_side_max=_RESIZE_SIDE_MAX)
                else:
                    im = preprocess_image(norm_,
                                          self.crop_size,
                                          self.crop_size,
                                          is_training=False,
                                          resize_side_min=_RESIZE_SIDE_MIN,
                                          resize_side_max=_RESIZE_SIDE_MAX)

                return im

            crop_images = tf.map_fn(prep_each, norm)
        elif thprep == 1:

            def prep_each(norm_):
                im = preprocessing_th(norm_,
                                      self.crop_size,
                                      self.crop_size,
                                      is_training=self.group == 'train',
                                      seed_random=seed_random)
                return im

            crop_images = prep_each(images)
            crop_images = tf.expand_dims(crop_images, axis=0)
        elif sm_full_size == 1:
            if with_color_noise == 1 and self.group == 'train':
                order_temp = tf.constant([0, 1, 2], dtype=tf.int32)
                order_rand = tf.random_shuffle(order_temp, seed=seed_random)

                fn_pred_fn_pairs = lambda x, image: [
                    (tf.equal(x, order_temp[0]), lambda: tf.image.
                     random_saturation(image, 0.6, 1.4, seed=seed_random)),
                    (tf.equal(x, order_temp[1]), lambda: tf.image.
                     random_brightness(image, 0.4, seed=seed_random)),
                ]
                default_fn = lambda image: tf.image.random_contrast(
                    image, 0.6, 1.4, seed=seed_random)

                def _color_jitter_one(_norm):
                    orig_shape = _norm.get_shape().as_list()
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[0], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[1], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[2], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm.set_shape(orig_shape)

                    return _norm

                norm = tf.map_fn(_color_jitter_one, norm)

            if sub_mean == 1:
                IMAGENET_MEAN = tf.constant(np.load(mean_path).swapaxes(
                    0, 1).swapaxes(1, 2)[:, :, ::-1],
                                            dtype=tf.float32)
                orig_dtype = tf.float32
                norm = norm - IMAGENET_MEAN

            if self.group == 'train':
                if self.withflip == 1 or with_flip == 1:

                    def _postprocess_flip(im):
                        # Original way of flipping, changing to random_uniform way to be more controllable
                        # im = tf.image.random_flip_left_right(im, seed = seed_random)
                        # return im
                        do_flip = tf.random_uniform(shape=[1],
                                                    minval=0,
                                                    maxval=1,
                                                    dtype=tf.float32,
                                                    seed=seed_random)

                        def __left_right_flip(im):
                            flipped = tf.image.flip_left_right(im)
                            if is_normal == 1:
                                # flipped = 256 - flipped
                                flipped_x, flipped_y, flipped_z = tf.unstack(
                                    flipped, axis=2)
                                flipped = tf.stack(
                                    [256 - flipped_x, flipped_y, flipped_z],
                                    axis=2)
                            return flipped

                        return tf.cond(tf.less(do_flip[0], 0.5),
                                       fn1=lambda: __left_right_flip(im),
                                       fn2=lambda: im)

                    norm = tf.map_fn(_postprocess_flip, norm, dtype=norm.dtype)

                if with_noise == 1:

                    def _postprocess_noise(im):
                        do_noise = tf.random_uniform(shape=[1],
                                                     minval=0,
                                                     maxval=1,
                                                     dtype=tf.float32,
                                                     seed=None)

                        def __add_noise(im):
                            curr_level = tf.random_uniform(shape=[1],
                                                           minval=0,
                                                           maxval=noise_level,
                                                           dtype=tf.float32,
                                                           seed=None)
                            curr_noise = tf.random_normal(shape=tf.shape(im),
                                                          mean=0.0,
                                                          stddev=curr_level,
                                                          dtype=tf.float32)

                            return tf.add(im, curr_noise)

                        # return tf.cond(tf.less(do_noise[0], 0.5), true_fn = lambda: __add_noise(im), false_fn = lambda: im)
                        return tf.cond(tf.less(do_noise[0], 0.5),
                                       fn1=lambda: __add_noise(im),
                                       fn2=lambda: im)

                    norm = tf.map_fn(_postprocess_noise,
                                     norm,
                                     dtype=norm.dtype)
            crop_images = tf.cast(norm, orig_dtype)
        else:
            if with_color_noise == 1 and self.group == 'train':
                order_temp = tf.constant([0, 1, 2], dtype=tf.int32)
                order_rand = tf.random_shuffle(order_temp, seed=seed_random)

                fn_pred_fn_pairs = lambda x, image: [
                    (tf.equal(x, order_temp[0]), lambda: tf.image.
                     random_saturation(image, 0.6, 1.4, seed=seed_random)),
                    (tf.equal(x, order_temp[1]), lambda: tf.image.
                     random_brightness(image, 0.4, seed=seed_random)),
                ]
                default_fn = lambda image: tf.image.random_contrast(
                    image, 0.6, 1.4, seed=seed_random)

                def _color_jitter_one(_norm):
                    orig_shape = _norm.get_shape().as_list()
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[0], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[1], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm = tf.case(fn_pred_fn_pairs(order_rand[2], _norm),
                                    default=lambda: default_fn(_norm))
                    _norm.set_shape(orig_shape)

                    return _norm

                norm = tf.map_fn(_color_jitter_one, norm)

            if sub_mean == 1:
                IMAGENET_MEAN = tf.constant(np.load(mean_path).swapaxes(
                    0, 1).swapaxes(1, 2)[:, :, ::-1],
                                            dtype=tf.float32)
                orig_dtype = tf.float32
                norm = norm - IMAGENET_MEAN
            if self.group == 'train':

                if self.size_vary_prep == 0 and size_vary_prep == 0:
                    shape_tensor = norm.get_shape().as_list()
                    if self.crop_each == 0:
                        crop_images = tf.random_crop(norm, [
                            curr_batch_size, self.crop_size, self.crop_size,
                            shape_tensor[3]
                        ],
                                                     seed=seed_random)
                    else:
                        # original implementation is not useful, deleted, see the end of this file
                        crop_images = tf.random_crop(norm, [
                            curr_batch_size, self.crop_size, self.crop_size,
                            shape_tensor[3]
                        ],
                                                     seed=seed_random)
                else:  # self.size_vary_prep==1
                    if shape_undefined == 0:
                        channel_num = norm.get_shape().as_list()[-1]
                    else:
                        channel_num = 3
                    RandomSizedCrop_with_para = lambda image: RandomSizedCrop(
                        image=image,
                        out_height=self.crop_size,
                        out_width=self.crop_size,
                        seed_random=seed_random,
                        channel_num=channel_num,
                        fix_asp_ratio=self.fix_asp_ratio,
                        size_minval=size_minval,
                    )
                    if shape_undefined == 0:
                        crop_images = tf.map_fn(RandomSizedCrop_with_para,
                                                norm)
                        curr_shape = crop_images.get_shape().as_list()
                        crop_images.set_shape([curr_batch_size] +
                                              curr_shape[1:])
                    else:
                        crop_images = RandomSizedCrop_with_para(norm)
                        crop_images = tf.expand_dims(crop_images, axis=0)

                if self.withflip == 1 or with_flip == 1:

                    def _postprocess_flip(im):
                        # Original way of flipping, changing to random_uniform way to be more controllable
                        # im = tf.image.random_flip_left_right(im, seed = seed_random)
                        # return im
                        do_flip = tf.random_uniform(shape=[1],
                                                    minval=0,
                                                    maxval=1,
                                                    dtype=tf.float32,
                                                    seed=seed_random)

                        def __left_right_flip(im):
                            flipped = tf.image.flip_left_right(im)
                            if is_normal == 1:
                                # flipped = 256 - flipped
                                flipped_x, flipped_y, flipped_z = tf.unstack(
                                    flipped, axis=2)
                                flipped = tf.stack(
                                    [256 - flipped_x, flipped_y, flipped_z],
                                    axis=2)
                            return flipped

                        return tf.cond(tf.less(do_flip[0], 0.5),
                                       fn1=lambda: __left_right_flip(im),
                                       fn2=lambda: im)

                    crop_images = tf.map_fn(_postprocess_flip,
                                            crop_images,
                                            dtype=crop_images.dtype)

                if with_noise == 1:

                    def _postprocess_noise(im):
                        do_noise = tf.random_uniform(shape=[1],
                                                     minval=0,
                                                     maxval=1,
                                                     dtype=tf.float32,
                                                     seed=None)

                        def __add_noise(im):
                            curr_level = tf.random_uniform(shape=[1],
                                                           minval=0,
                                                           maxval=noise_level,
                                                           dtype=tf.float32,
                                                           seed=None)
                            curr_noise = tf.random_normal(shape=tf.shape(im),
                                                          mean=0.0,
                                                          stddev=curr_level,
                                                          dtype=tf.float32)

                            return tf.add(im, curr_noise)

                        # return tf.cond(tf.less(do_noise[0], 0.5), true_fn = lambda: __add_noise(im), false_fn = lambda: im)
                        return tf.cond(tf.less(do_noise[0], 0.5),
                                       fn1=lambda: __add_noise(im),
                                       fn2=lambda: im)

                    crop_images = tf.map_fn(_postprocess_noise,
                                            crop_images,
                                            dtype=crop_images.dtype)

            else:  # not self.group=='train'

                if shape_undefined == 0:
                    off = np.zeros(shape=[curr_batch_size, 4])
                    off[:, 0] = int((NOW_SIZE1 - self.crop_size) / 2)
                    off[:, 1] = int((NOW_SIZE2 - self.crop_size) / 2)
                    off[:, 2:4] = off[:, :2] + self.crop_size
                    off[:, 0] = off[:, 0] * 1.0 / (NOW_SIZE1 - 1)
                    off[:, 2] = off[:, 2] * 1.0 / (NOW_SIZE1 - 1)

                    off[:, 1] = off[:, 1] * 1.0 / (NOW_SIZE2 - 1)
                    off[:, 3] = off[:, 3] * 1.0 / (NOW_SIZE2 - 1)

                    box_ind = tf.constant(range(curr_batch_size))

                    crop_images = tf.image.crop_and_resize(
                        norm, off, box_ind,
                        tf.constant([self.crop_size, self.crop_size]))
                else:
                    image = _aspect_preserving_resize(norm, 256)
                    image = _central_crop([image], self.crop_size,
                                          self.crop_size)[0]
                    image.set_shape([self.crop_size, self.crop_size, 3])
                    crop_images = image
                    crop_images = tf.expand_dims(crop_images, axis=0)

            crop_images = tf.cast(crop_images, orig_dtype)
        if curr_batch_size == 1:
            crop_images = tf.squeeze(crop_images, axis=[0])

        return crop_images
Esempio n. 38
0
        def model_fn(features, labels, mode):
            """
            the model_fn feeds into Estimator
            """
            feature_columns = self.create_feature_columns(tf_transform_output)
            input_layer = tf.feature_column.input_layer(
                features=features, feature_columns=feature_columns)

            # Network structure
            # Batch norm after linear combination and before activation. Dropout after activation.
            h1 = tf.layers.Dense(
                units=MODEL_NUM_UNIT_SCALE * 4,
                activation=None,
                kernel_initializer=tf.glorot_normal_initializer(),
                bias_initializer=tf.zeros_initializer()
            )(input_layer)
            h1_bn = tf.layers.batch_normalization(h1, training=(mode == tf.estimator.ModeKeys.TRAIN))
            h1_act = tf.nn.relu(h1_bn)
            h1_do = tf.layers.dropout(
                inputs=h1_act,
                rate=DROPOUT_PROB,
                training=(mode == tf.estimator.ModeKeys.TRAIN))

            h2 = tf.layers.Dense(
                units=MODEL_NUM_UNIT_SCALE * 2,
                activation=None,
                kernel_initializer=tf.glorot_normal_initializer(),
                bias_initializer=tf.zeros_initializer()
            )(h1_do)
            h2_bn = tf.layers.batch_normalization(h2, training=(mode == tf.estimator.ModeKeys.TRAIN))
            h2_act = tf.nn.relu(h2_bn)
            h2_do = tf.layers.dropout(
                inputs=h2_act,
                rate=DROPOUT_PROB,
                training=(mode == tf.estimator.ModeKeys.TRAIN))

            # Head for label1
            h30 = tf.layers.Dense(
                units=MODEL_NUM_UNIT_SCALE,
                activation=None,
                kernel_initializer=tf.glorot_normal_initializer(),
                bias_initializer=tf.zeros_initializer()
            )(h2_do)
            h3_bn0 = tf.layers.batch_normalization(h30, training=(mode == tf.estimator.ModeKeys.TRAIN))
            h3_act0 = tf.nn.relu(h3_bn0)
            h3_do0 = tf.layers.dropout(
                inputs=h3_act0,
                rate=DROPOUT_PROB,
                training=(mode == tf.estimator.ModeKeys.TRAIN))
            logits0 = tf.layers.Dense(
                units=2,
                activation=None,
                kernel_initializer=tf.glorot_normal_initializer(),
                bias_initializer=tf.zeros_initializer()
            )(h3_do0)
            softmax0 = tf.contrib.layers.softmax(logits0)

            q_values = tf.div(softmax0[:, 1] - tf.reduce_min(softmax0[:, 1]),
                              tf.reduce_max(softmax0[:, 1]) - tf.reduce_min(softmax0[:, 1]))

            if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
                labels0 = labels  # int64 Notice: use labels but not labels[0], because we only have 1 label now.
                onehot_labels0 = tf.one_hot(labels0,
                                            depth=2)  # shape(2,0) should [batch_size, num_classes]  , logit should [batch_size, num_classes]
                # logit(?,2)
                # `ror_20_days_bool` loss definition: weighting to correct for class imbalances.
                unweighted_losses0 = tf.losses.softmax_cross_entropy(
                    onehot_labels=onehot_labels0, logits=logits0, reduction=Reduction.NONE)
                class_weights0 = tf.constant([[1., 1.]])
                sample_weights0 = tf.reduce_sum(tf.multiply(onehot_labels0, class_weights0), 1)
                loss0 = tf.reduce_mean(unweighted_losses0 * sample_weights0)

                loss = loss0

                # Metrics
                auroc0 = tf.metrics.auc(labels0, softmax0[:, 1], num_thresholds=10000, curve='ROC')
                prauc0 = tf.metrics.auc(labels0, softmax0[:, 1], num_thresholds=10000, curve='PR',
                                        summation_method='careful_interpolation')

            if mode == tf.estimator.ModeKeys.TRAIN:

                # MSE loss, optimized with Adam
                optimizer = tf.train.AdamOptimizer(FIX_LEARNING_RATE)

                # This is to make sure we also update the rolling mean/var for `tf.layers.batch_normalization`
                # (which is stored outside of the Estimator scope).
                update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
                with tf.control_dependencies(update_ops):
                    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

                # TensorBoard performance metrics.
                with tf.name_scope('losses'):
                    tf.summary.scalar('loss_ror_20', loss0)

                # TensorBoard model evolution over time.
                with tf.name_scope('layer_1'):
                    weights = tf.get_default_graph().get_tensor_by_name(os.path.split(h1.name)[0] + '/kernel:0')
                    biases = tf.get_default_graph().get_tensor_by_name(os.path.split(h1.name)[0] + '/bias:0')
                    tf.summary.histogram('weights', weights)
                    tf.summary.histogram('biases', biases)
                    tf.summary.histogram('activations', h1_act)
                with tf.name_scope('layer_2'):
                    weights = tf.get_default_graph().get_tensor_by_name(os.path.split(h2.name)[0] + '/kernel:0')
                    biases = tf.get_default_graph().get_tensor_by_name(os.path.split(h2.name)[0] + '/bias:0')
                    tf.summary.histogram('weights', weights)
                    tf.summary.histogram('biases', biases)
                    tf.summary.histogram('activations', h2_act)
                with tf.name_scope('layer_3_ror_20'):
                    weights = tf.get_default_graph().get_tensor_by_name(os.path.split(h30.name)[0] + '/kernel:0')
                    biases = tf.get_default_graph().get_tensor_by_name(os.path.split(h30.name)[0] + '/bias:0')
                    tf.summary.histogram('weights', weights)
                    tf.summary.histogram('biases', biases)
                    tf.summary.histogram('activations', h3_act0)
                with tf.name_scope('logits_ror_20'):
                    weights = tf.get_default_graph().get_tensor_by_name(
                        os.path.split(logits0.name)[0] + '/kernel:0')
                    biases = tf.get_default_graph().get_tensor_by_name(os.path.split(logits0.name)[0] + '/bias:0')
                    tf.summary.histogram('weights', weights)
                    tf.summary.histogram('biases', biases)
                    tf.summary.histogram('activations', h3_act0)
                with tf.name_scope('q_values_ror_20'):
                    tf.summary.histogram('q0', softmax0[:, 0])
                    tf.summary.histogram('q1', softmax0[:, 1])

                # Log a few predictions.label0 : ror_xxx_days_bool
                # to watch the labels and softmax in training
                label_and_softmax0 = tf.stack([tf.cast(labels0, tf.float32), softmax0[:, 1]], axis=1)
                logging_hook = tf.train.LoggingTensorHook({
                    'label_and_softmax0': label_and_softmax0[0:10, :],  # label_and_softmax0 size is batch size in train_config "TRAIN_BATCH_SIZE"
                }, every_n_iter=LOG_FREQ_STEP)

                return tf.estimator.EstimatorSpec(
                    mode=mode,
                    loss=loss,
                    train_op=train_op,
                    training_hooks=[logging_hook])

            elif mode == tf.estimator.ModeKeys.EVAL:
                return tf.estimator.EstimatorSpec(
                    mode=mode,
                    loss=loss,
                    # These metrics are computed over the complete eval dataset.
                    eval_metric_ops={
                        'metrics_ror_20_days_bool/AUC_ROC': auroc0,
                        'metrics_ror_20_days_bool/AUC_PR': prauc0,
                    }, predictions={SignatureKeys.PREDICTIONS: q_values})

            elif mode == tf.estimator.ModeKeys.PREDICT:
                """
                A policy derived from the Q-value network. This epsilon-greedy policy
                computes the seeds with the `TOP_SEEDS_K` values and replaces them according to a
                `epsilon_greedy_probability` probability with a random value in [0, 1000).
                """

                # Indices of top `p.TOP_SEEDS_K` Q-values.
                top_q_idx = tf.nn.top_k(q_values, k=TOP_SEEDS_K)[1]
                sel_q_idx = tf.random_shuffle(top_q_idx)[0:SEEDS_K_FINAL]
                # Since seeds are in [1, `p.SEEDS_K_FINAL`], we have to add 1 to the index.
                predictions = sel_q_idx + 1

                class_labels_ror_20 = tf.reshape(
                    tf.tile(tf.constant(['0', '1']), (tf.shape(softmax0)[0],)),
                    (tf.shape(softmax0)[0], 2))

                export_outputs = {
                    # Default output (used in serving-infra)
                    # * output: Seed list. Requires using `SignatureKeys.OUTPUT` dict key, since this is
                    #   used by the downstream SRS.
                    # * eps_rnd_selection: Boolean list of whether a random seed (with eps prob)
                    #   was recommend or a predicted seed.
                    # * q_values: Q-values for all `SEED_LIST_LENGTH` seeds.
                    SignatureDefs.DEFAULT: tf.estimator.export.PredictOutput(
                        {SignatureKeys.OUTPUT: predictions,
                         "q_values": tf.transpose(q_values)}),
                    # Analysis output
                    SignatureDefs.ANALYSIS_ROR_20: tf.estimator.export.ClassificationOutput(
                        scores=softmax0,
                        classes=class_labels_ror_20),
                    SignatureDefs.ANALYSIS_Q: tf.estimator.export.RegressionOutput(
                        value=q_values)
                }

                return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions={SignatureKeys.PREDICTIONS: q_values},
                    export_outputs=export_outputs)
Esempio n. 39
0
 def f1():
     # Choose a random contiguous range from within the sequence.
     range_min = tf.random_shuffle(tf.range(seq_len - batch_size))[0]
     range_max = range_min + batch_size
     return tf.range(range_min, range_max)
    def make_data_tensor(self, train=True):
        if train:
            folders = self.metatrain_character_folders
            # number of tasks, not number of meta-iterations. (divide by metabatch size to measure)
            num_total_batches = 200000
        else:
            folders = self.metaval_character_folders
            num_total_batches = 600

        # make list of files
        print('Generating filenames')
        all_filenames = []
        for _ in range(num_total_batches):
            sampled_character_folders = random.sample(folders,
                                                      self.num_classes)
            random.shuffle(sampled_character_folders)
            labels_and_images = get_images(
                sampled_character_folders,
                range(self.num_classes),
                nb_samples=self.num_samples_per_class,
                shuffle=False)
            # make sure the above isn't randomized order
            labels = [li[0] for li in labels_and_images]
            filenames = [li[1] for li in labels_and_images]
            all_filenames.extend(filenames)

        # make queue for tensorflow to read from
        filename_queue = tf.train.string_input_producer(
            tf.convert_to_tensor(all_filenames), shuffle=False)
        print('Generating image processing ops')
        image_reader = tf.WholeFileReader()
        _, image_file = image_reader.read(filename_queue)
        if FLAGS.datasource == 'miniimagenet':
            image = tf.image.decode_jpeg(image_file, channels=3)
            image.set_shape((self.img_size[0], self.img_size[1], 3))
            image = tf.reshape(image, [self.dim_input])
            image = tf.cast(image, tf.float32) / 255.0
        else:
            image = tf.image.decode_png(image_file)
            image.set_shape((self.img_size[0], self.img_size[1], 1))
            image = tf.reshape(image, [self.dim_input])
            image = tf.cast(image, tf.float32) / 255.0
            image = 1.0 - image  # invert
        num_preprocess_threads = 1  # TODO - enable this to be set to >1
        min_queue_examples = 256
        examples_per_batch = self.num_classes * self.num_samples_per_class
        batch_image_size = self.batch_size * examples_per_batch
        print('Batching images')
        images = tf.train.batch(
            [image],
            batch_size=batch_image_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_image_size,
        )
        all_image_batches, all_label_batches = [], []
        print('Manipulating image data to be right shape')
        for i in range(self.batch_size):
            image_batch = images[i * examples_per_batch:(i + 1) *
                                 examples_per_batch]

            if FLAGS.datasource == 'omniglot':
                # omniglot augments the dataset by rotating digits to create new classes
                # get rotation per class (e.g. 0,1,2,0,0 if there are 5 classes)
                rotations = tf.multinomial(tf.log([[1., 1., 1., 1.]]),
                                           self.num_classes)
            label_batch = tf.convert_to_tensor(labels)
            new_list, new_label_list = [], []
            for k in range(self.num_samples_per_class):
                class_idxs = tf.range(0, self.num_classes)
                class_idxs = tf.random_shuffle(class_idxs)

                true_idxs = class_idxs * self.num_samples_per_class + k
                new_list.append(tf.gather(image_batch, true_idxs))
                if FLAGS.datasource == 'omniglot':  # and FLAGS.train:
                    new_list[-1] = tf.stack([
                        tf.reshape(
                            tf.image.rot90(tf.reshape(
                                new_list[-1][ind],
                                [self.img_size[0], self.img_size[1], 1]),
                                           k=tf.cast(
                                               rotations[0, class_idxs[ind]],
                                               tf.int32)), (self.dim_input, ))
                        for ind in range(self.num_classes)
                    ])
                new_label_list.append(tf.gather(label_batch, true_idxs))
            new_list = tf.concat(
                new_list, 0
            )  # has shape [self.num_classes*self.num_samples_per_class, self.dim_input]
            new_label_list = tf.concat(new_label_list, 0)
            all_image_batches.append(new_list)
            all_label_batches.append(new_label_list)
        all_image_batches = tf.stack(all_image_batches)
        all_label_batches = tf.stack(all_label_batches)
        all_label_batches = tf.one_hot(all_label_batches, self.num_classes)
        return all_image_batches, all_label_batches
Esempio n. 41
0
    def process_dataset(self, *row_parts):
        row_parts = list(row_parts)
        word = row_parts[0]  # (, )

        if not self.is_evaluating and self.config.RANDOM_CONTEXTS:
            all_contexts = tf.stack(row_parts[1:])
            all_contexts_padded = tf.concat([all_contexts, [self.context_pad]],
                                            axis=-1)
            index_of_blank_context = tf.where(
                tf.equal(all_contexts_padded, self.context_pad))
            num_contexts_per_example = tf.reduce_min(index_of_blank_context)

            # if there are less than self.max_contexts valid contexts, still sample self.max_contexts
            safe_limit = tf.cast(
                tf.maximum(num_contexts_per_example, self.config.MAX_CONTEXTS),
                tf.int32)
            rand_indices = tf.random_shuffle(
                tf.range(safe_limit))[:self.config.MAX_CONTEXTS]
            contexts = tf.gather(all_contexts, rand_indices)  # (max_contexts,)
        else:
            contexts = row_parts[1:(self.config.MAX_CONTEXTS +
                                    1)]  # (max_contexts,)

        # contexts: (max_contexts, )
        split_contexts = tf.string_split(contexts,
                                         delimiter=",",
                                         skip_empty=False)
        sparse_split_contexts = tf.sparse.SparseTensor(
            indices=split_contexts.indices,
            values=split_contexts.values,
            dense_shape=[self.config.MAX_CONTEXTS, 3],
        )
        dense_split_contexts = tf.reshape(
            tf.sparse.to_dense(sp_input=sparse_split_contexts,
                               default_value=Common.PAD),
            shape=[self.config.MAX_CONTEXTS, 3],
        )  # (batch, max_contexts, 3)

        split_target_labels = tf.string_split(tf.expand_dims(word, -1),
                                              delimiter="|")
        target_dense_shape = [
            1,
            tf.maximum(
                tf.cast(self.config.MAX_TARGET_PARTS, tf.int64),
                #                tf.to_int64(self.config.MAX_TARGET_PARTS),
                split_target_labels.dense_shape[1] + 1,
            ),
        ]
        sparse_target_labels = tf.sparse.SparseTensor(
            indices=split_target_labels.indices,
            values=split_target_labels.values,
            dense_shape=target_dense_shape,
        )
        dense_target_label = tf.reshape(
            tf.sparse.to_dense(sp_input=sparse_target_labels,
                               default_value=Common.PAD),
            [-1],
        )
        index_of_blank = tf.where(tf.equal(dense_target_label, Common.PAD))
        target_length = tf.reduce_min(index_of_blank)
        dense_target_label = dense_target_label[:self.config.MAX_TARGET_PARTS]
        clipped_target_lengths = tf.clip_by_value(
            target_length,
            clip_value_min=0,
            clip_value_max=self.config.MAX_TARGET_PARTS)
        target_word_labels = tf.concat(
            [self.target_table.lookup(dense_target_label), [0]],
            axis=-1)  # (max_target_parts + 1) of int

        path_source_strings = tf.slice(
            dense_split_contexts, [0, 0],
            [self.config.MAX_CONTEXTS, 1])  # (max_contexts, 1)
        flat_source_strings = tf.reshape(path_source_strings,
                                         [-1])  # (max_contexts)
        split_source = tf.string_split(
            flat_source_strings, delimiter="|",
            skip_empty=False)  # (max_contexts, max_name_parts)

        sparse_split_source = tf.sparse.SparseTensor(
            indices=split_source.indices,
            values=split_source.values,
            dense_shape=[
                self.config.MAX_CONTEXTS,
                tf.maximum(tf.to_int64(self.config.MAX_NAME_PARTS),
                           split_source.dense_shape[1]),
            ],
        )
        dense_split_source = tf.sparse.to_dense(
            sp_input=sparse_split_source,
            default_value=Common.PAD)  # (max_contexts, max_name_parts)
        dense_split_source = tf.slice(dense_split_source, [0, 0],
                                      [-1, self.config.MAX_NAME_PARTS])
        path_source_indices = self.subtoken_table.lookup(
            dense_split_source)  # (max_contexts, max_name_parts)
        path_source_lengths = tf.reduce_sum(
            tf.cast(tf.not_equal(dense_split_source, Common.PAD), tf.int32),
            -1)  # (max_contexts)

        path_strings = tf.slice(dense_split_contexts, [0, 1],
                                [self.config.MAX_CONTEXTS, 1])
        flat_path_strings = tf.reshape(path_strings, [-1])
        split_path = tf.string_split(flat_path_strings,
                                     delimiter="|",
                                     skip_empty=False)
        sparse_split_path = tf.sparse.SparseTensor(
            indices=split_path.indices,
            values=split_path.values,
            dense_shape=[
                self.config.MAX_CONTEXTS, self.config.MAX_PATH_LENGTH
            ],
        )
        dense_split_path = tf.sparse.to_dense(
            sp_input=sparse_split_path,
            default_value=Common.PAD)  # (batch, max_contexts, max_path_length)

        node_indices = self.node_table.lookup(
            dense_split_path)  # (max_contexts, max_path_length)
        path_lengths = tf.reduce_sum(
            tf.cast(tf.not_equal(dense_split_path, Common.PAD), tf.int32),
            -1)  # (max_contexts)

        path_target_strings = tf.slice(
            dense_split_contexts, [0, 2],
            [self.config.MAX_CONTEXTS, 1])  # (max_contexts, 1)
        flat_target_strings = tf.reshape(path_target_strings,
                                         [-1])  # (max_contexts)
        split_target = tf.string_split(
            flat_target_strings, delimiter="|",
            skip_empty=False)  # (max_contexts, max_name_parts)
        sparse_split_target = tf.sparse.SparseTensor(
            indices=split_target.indices,
            values=split_target.values,
            dense_shape=[
                self.config.MAX_CONTEXTS,
                tf.maximum(tf.to_int64(self.config.MAX_NAME_PARTS),
                           split_target.dense_shape[1]),
            ],
        )
        dense_split_target = tf.sparse.to_dense(
            sp_input=sparse_split_target,
            default_value=Common.PAD)  # (max_contexts, max_name_parts)
        dense_split_target = tf.slice(dense_split_target, [0, 0],
                                      [-1, self.config.MAX_NAME_PARTS])
        path_target_indices = self.subtoken_table.lookup(
            dense_split_target)  # (max_contexts, max_name_parts)
        path_target_lengths = tf.reduce_sum(
            tf.cast(tf.not_equal(dense_split_target, Common.PAD), tf.int32),
            -1)  # (max_contexts)

        valid_contexts_mask = tf.cast(  # tf.to_float
            tf.not_equal(
                tf.reduce_max(path_source_indices, -1) +
                tf.reduce_max(node_indices, -1) +
                tf.reduce_max(path_target_indices, -1),
                0,
            ),
            dtype=tf.float32,
        )

        return {
            TARGET_STRING_KEY: word,
            TARGET_INDEX_KEY: target_word_labels,
            TARGET_LENGTH_KEY: clipped_target_lengths,
            PATH_SOURCE_INDICES_KEY: path_source_indices,
            NODE_INDICES_KEY: node_indices,
            PATH_TARGET_INDICES_KEY: path_target_indices,
            VALID_CONTEXT_MASK_KEY: valid_contexts_mask,
            PATH_SOURCE_LENGTHS_KEY: path_source_lengths,
            PATH_LENGTHS_KEY: path_lengths,
            PATH_TARGET_LENGTHS_KEY: path_target_lengths,
            PATH_SOURCE_STRINGS_KEY: path_source_strings,
            PATH_STRINGS_KEY: path_strings,
            PATH_TARGET_STRINGS_KEY: path_target_strings,
        }
Esempio n. 42
0
y_values = []
vector_values = []

# generate random data
for i in range(num_vectors):
    if np.random.random() > 0.5:
        x_values.append(np.random.normal(0.4, 0.7))
        y_values.append(np.random.normal(0.2, 0.8))
    else:
        x_values.append(np.random.normal(0.6, 0.4))
        y_values.append(np.random.normal(0.8, 0.5))

vector_values = zip(x_values, y_values)
vectors = tf.constant(vector_values)
n_samples = tf.shape(vector_values)[0]
random_indices = tf.random_shuffle(tf.range(0, n_samples))
begin = [
    0,
]
size = [
    num_clusters,
]
size[0] = num_clusters
centroid_indices = tf.slice(random_indices, begin, size)
centroids = tf.Variable(tf.gather(vector_values, centroid_indices))
expanded_vectors = tf.expand_dims(vectors, 0)
expanded_centroids = tf.expand_dims(centroids, 1)
vectors_subtraction = tf.sub(expanded_vectors, expanded_centroids)
euclidean_distances = tf.reduce_sum(tf.square(vectors_subtraction), 2)
assignments = tf.to_int32(tf.argmin(euclidean_distances, 0))
partitions = [0, 0, 1, 1, 0]
Esempio n. 43
0
def detection_targets_graph(config, proposals, gt_class_ids, gt_boxes,
                            **kwargs):
    # Assertions
    asserts = \
        [tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], name="roi_assertion"),]

    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove zero padding
    proposals, _ = \
        model.trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = \
        model.trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = \
        model.tf.boolean_mask(gt_class_ids, non_zeros, name="trim_gt_class_ids")

    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = tf.where(gt_class_ids < 0)[:, 0]
    non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]
    crowd_boxes = tf.gather(gt_boxes, crowd_ix)
    gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)
    gt_boxes = tf.gather(gt_boxes, non_crowd_ix)

    # Compute overlaps matrix [proposals, gt_boxes]
    overlaps = model.overlaps_graph(proposals, gt_boxes)

    # Compute overlaps with crowd boxes [anchors, crowds]
    crowd_overlaps = model.overlaps_graph(proposals, crowd_boxes)
    crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
    no_crowd_bool = (crowd_iou_max < 0.001)

    # Determine postive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds.
    negative_indices = tf.where(
        tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # Negative ROIs. Add enough to maintain positive:negative ratio.
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32),
                             tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
    roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1)
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # Compute mask targets
    boxes = positive_rois

    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])

    if 'gt_rboxes' in kwargs:
        gt_rboxes = kwargs.get('gt_rboxes')
        gt_rboxes, _ = model.trim_zeros_graph(gt_rboxes, name="trim_gt_rboxes")
        gt_rboxes = tf.gather(gt_rboxes, non_crowd_ix)
        roi_gt_rboxes = tf.gather(gt_rboxes, roi_gt_box_assignment)

        if config.regressor == "deltas":
            rbox_deltas = line_to_deltas(roi_gt_boxes, roi_gt_rboxes)
            rbox_deltas /= 0.2
            rbox_deltas = tf.pad(rbox_deltas, [(0, N + P), (0, 0)])
            return rois, roi_gt_class_ids, deltas, rbox_deltas
        elif config.regressor == "rotdim":
            gt_angles = kwargs.get('gt_angles')
            gt_angles = tf.boolean_mask(gt_angles,
                                        non_zeros,
                                        name="trim_gt_angles")
            gt_angles = tf.gather(gt_angles, non_crowd_ix)
            roi_gt_angles = tf.gather(gt_angles, roi_gt_box_assignment)
            rbox_angles = roi_gt_angles / 0.2

            # point 1
            y1 = roi_gt_rboxes[:, 0]
            x1 = roi_gt_rboxes[:, 1]
            # point 2
            y2 = roi_gt_rboxes[:, 2]
            x2 = roi_gt_rboxes[:, 3]
            # point 3
            y3 = roi_gt_rboxes[:, 4]
            x3 = roi_gt_rboxes[:, 5]

            rw = tf.sqrt(tf.pow(x2 - x1, 2) + tf.pow(y2 - y1, 2))
            rh = tf.sqrt(tf.pow(x3 - x2, 2) + tf.pow(y3 - y2, 2))
            rbox_dim = tf.stack([rh, rw], axis=1)
            rbox_dim /= 0.1

            rbox_dim = tf.pad(rbox_dim, [(0, N + P), (0, 0)])
            rbox_angles = tf.pad(rbox_angles, [(0, N + P), (0, 0)])
            return rois, roi_gt_class_ids, deltas, rbox_angles, rbox_dim
        elif config.regressor == "verts":
            roi_gt_rboxes = tf.pad(roi_gt_rboxes, [(0, N + P), (0, 0)])
            return rois, roi_gt_class_ids, deltas, roi_gt_rboxes

    return rois, roi_gt_class_ids, deltas
Esempio n. 44
0
                            

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

df = pd.DataFrame({'x': [v[0] for v in vectors_set],
                   'y': [v[1] for v in vectors_set]})
sns.lmplot('x', 'y', data=df, fit_reg=False, size=6)
plt.show()

import tensorflow as tf

vectors = tf.constant(vectors_set)
k = 4
centroides = tf.Variable(tf.slice(tf.random_shuffle(vectors),[0,0],[k,-1]))

expanded_vectors = tf.expand_dims(vectors, 0)
expanded_centroides = tf.expand_dims(centroides, 0)

assignments = tf.argmin(tf.reduce_sum(tf.square(tf.sub(expanded_vectors,
                                                       expanded_centroides)),2),0)
means = tf.concat(0, [tf.reduce_sum(tf.gather(vectors, tf.reshape(tf.where(tf.equal(assignments,c)),
                                                                  [1,-1])),
                                    reduction_indices=[1]) for c in range(k)])
update_centroides = tf.assign(centroides, means)

init_op = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init_op)
Esempio n. 45
0
    def build_model(self,
                    is_training=True,
                    inst_norm=False,
                    no_target_source=False):

        real_data = tf.placeholder(tf.float32, [
            self.batch_size, self.input_width, self.input_width,
            self.input_filters + self.output_filters
        ],
                                   name='real_A_and_B_images')
        embedding_ids = tf.placeholder(tf.int64,
                                       shape=None,
                                       name="embedding_ids")
        no_target_data = tf.placeholder(tf.float32, [
            self.batch_size, self.input_width, self.input_width,
            self.input_filters + self.output_filters
        ],
                                        name='no_target_A_and_B_images')
        no_target_ids = tf.placeholder(tf.int64,
                                       shape=None,
                                       name="no_target_embedding_ids")

        # target images
        real_A = real_data[:, :, :, :self.input_filters]
        # source images
        real_B = real_data[:, :, :, self.input_filters:self.input_filters +
                           self.output_filters]
        real_A_shuffle = tf.random_shuffle(real_A)
        embedding = init_embedding(self.embedding_num, self.embedding_dim)

        fake_target, target_gaussian1, target_gaussian2, source_e8, layers_source = self.generator(
            real_B,
            real_A,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=False)

        fake_target_shuffle, target_gaussian1_shuffle, target_gaussian2_shuffle = self.generator_gaussian(
            layers_source,
            real_A_shuffle,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=True)

        real_A_shuffle2 = tf.random_shuffle(real_A_shuffle)

        fake_target_shuffle2, target_gaussian1_shuffle2, target_gaussian2_shuffle2 = self.generator_gaussian(
            layers_source,
            real_A_shuffle2,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=True)

        real_A_shuffle3 = tf.random_shuffle(real_A_shuffle2)
        fake_target_shuffle3, target_gaussian1_shuffle3, target_gaussian2_shuffle3 = self.generator_gaussian(
            layers_source,
            real_A_shuffle3,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=True)

        real_A_shuffle4 = tf.random_shuffle(real_A_shuffle3)
        fake_target_shuffle4, target_gaussian1_shuffle4, target_gaussian2_shuffle4 = self.generator_gaussian(
            layers_source,
            real_A_shuffle4,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=True)

        real_A_shuffle5 = tf.random_shuffle(real_A_shuffle4)
        fake_target_shuffle5, target_gaussian1_shuffle5, target_gaussian2_shuffle5 = self.generator_gaussian(
            layers_source,
            real_A_shuffle5,
            embedding_ids,
            is_training=is_training,
            inst_norm=inst_norm,
            reuse=True)

        source_fake_e8, layers_source_fake = self.encoder(
            fake_target_shuffle, is_training=is_training, reuse=True)

        target_gaussian1_fake = self.gaussion_encoder(fake_target_shuffle,
                                                      layers_source,
                                                      is_training=is_training,
                                                      reuse=True)

        #real_AB = tf.concat([real_A, real_B], 3)
        #fake_AB = tf.concat([real_A, fake_B], 3)

        # Note it is not possible to set reuse flag back to False
        # initialize all variables before setting reuse to True
        #real_D, real_D_logits, real_category_logits = self.discriminator(real_AB, is_training=is_training, reuse=False)
        #fake_D, fake_D_logits, fake_category_logits = self.discriminator(fake_AB, is_training=is_training, reuse=True)

        # encoding constant loss
        # this loss assume that generated imaged and real image
        # should reside in the same space and close to each other
        #encoded_fake_B = self.encoder(fake_B, is_training, reuse=True)[0]
        #const_loss = (tf.reduce_mean(tf.square(encoded_real_A - encoded_fake_B))) * self.Lconst_penalty

        # category loss
        #true_labels = tf.reshape(tf.one_hot(indices=embedding_ids, depth=self.embedding_num),
        #                         shape=[self.batch_size, self.embedding_num])
        #real_category_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=target_gaussian1_fake,
        #                                                                            labels=target_gaussian1))

        real_category_loss = tf.reduce_sum(
            tf.abs(target_gaussian1_fake[:, :self.latent_dim] -
                   target_gaussian1_shuffle[:, :self.latent_dim]))
        #fake_category_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_category_logits,
        #                                                                            labels=true_labels))
        #category_loss = self.Lcategory_penalty * (real_category_loss + fake_category_loss)

        # binary real/fake loss
        #d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_D_logits,
        #                                                                     labels=tf.ones_like(real_D)))
        #d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_D_logits,
        #                                                                     labels=tf.zeros_like(fake_D)))
        # L1 loss between real and generated images
        l1_loss = self.L1_penalty * tf.reduce_mean(
            tf.abs(fake_target_shuffle - real_A), [1, 2, 3])
        l1_loss2 = self.L1_penalty * tf.reduce_mean(
            tf.abs(fake_target_shuffle2 - real_A), [1, 2, 3])
        l1_loss3 = self.L1_penalty * tf.reduce_mean(
            tf.abs(fake_target_shuffle3 - real_A), [1, 2, 3])
        l1_loss4 = self.L1_penalty * tf.reduce_mean(
            tf.abs(fake_target_shuffle4 - real_A), [1, 2, 3])
        l1_loss5 = self.L1_penalty * tf.reduce_mean(
            tf.abs(fake_target_shuffle5 - real_A), [1, 2, 3])

        # total variation loss
        #width = self.output_width
        #tv_loss = (tf.nn.l2_loss(fake_B[:, 1:, :, :] - fake_B[:, :width - 1, :, :]) / width
        #           + tf.nn.l2_loss(fake_B[:, :, 1:, :] - fake_B[:, :, :width - 1, :]) / width) * self.Ltv_penalty

        # maximize the chance generator fool the discriminator
        #cheat_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_D_logits,
        #                                                                    labels=tf.ones_like(fake_D)))

        #d_loss = d_loss_real + d_loss_fake + category_loss / 2.0

        q_z = distributions.Normal(
            loc=target_gaussian1_shuffle[:, :self.latent_dim],
            scale=tf.nn.softplus(target_gaussian1_shuffle[:,
                                                          self.latent_dim:]))

        q_z2 = distributions.Normal(
            loc=target_gaussian1_shuffle2[:, :self.latent_dim],
            scale=tf.nn.softplus(target_gaussian1_shuffle2[:,
                                                           self.latent_dim:]))
        q_z3 = distributions.Normal(
            loc=target_gaussian1_shuffle3[:, :self.latent_dim],
            scale=tf.nn.softplus(target_gaussian1_shuffle3[:,
                                                           self.latent_dim:]))
        q_z4 = distributions.Normal(
            loc=target_gaussian1_shuffle4[:, :self.latent_dim],
            scale=tf.nn.softplus(target_gaussian1_shuffle4[:,
                                                           self.latent_dim:]))
        q_z5 = distributions.Normal(
            loc=target_gaussian1_shuffle5[:, :self.latent_dim],
            scale=tf.nn.softplus(target_gaussian1_shuffle5[:,
                                                           self.latent_dim:]))

        # print(output.get_shape())
        p_z = distributions.Normal(loc=np.zeros(self.latent_dim,
                                                dtype=np.float32),
                                   scale=np.ones(self.latent_dim,
                                                 dtype=np.float32))

        kl_loss = tf.reduce_sum(distributions.kl_divergence(q_z, p_z), 1)
        kl_loss2 = tf.reduce_sum(distributions.kl_divergence(q_z2, p_z), 1)
        kl_loss3 = tf.reduce_sum(distributions.kl_divergence(q_z3, p_z), 1)
        kl_loss4 = tf.reduce_sum(distributions.kl_divergence(q_z4, p_z), 1)
        kl_loss5 = tf.reduce_sum(distributions.kl_divergence(q_z5, p_z), 1)
        kl_loss_1 = tf.reduce_sum(
            tf.reduce_sum(distributions.kl_divergence(q_z, p_z), 1))

        #const_loss = (tf.reduce_mean(tf.reduce_sum(tf.square(lay_AB["e1"] - lay_A["e1"]))+tf.reduce_sum(tf.square(lay_AB["e2"] - lay_A["e2"]))+tf.reduce_sum(tf.square(lay_AB["e3"] - lay_A["e3"]))+tf.reduce_sum(tf.square(lay_AB["e4"] - lay_A["e4"]))+tf.reduce_sum(tf.square(lay_AB["e5"] - lay_A["e5"]))+tf.reduce_sum(tf.square(lay_AB["e6"] - lay_A["e6"]))+tf.reduce_sum(tf.square(lay_AB["e7"] - lay_A["e7"])))) * self.Lconst_penalty

        const_loss1 = tf.reduce_mean(
            tf.square(layers_source_fake["e8"] - layers_source["e8"]),
            [1, 2, 3])
        const_loss2 = 10.0 * tf.reduce_mean(
            tf.square(layers_source_fake["e7"] - layers_source["e7"]),
            [1, 2, 3])
        const_loss3 = 5.0 * tf.reduce_mean(
            tf.square(layers_source_fake["e6"] - layers_source["e6"]),
            [1, 2, 3])
        const_loss4 = tf.reduce_mean(
            tf.square(layers_source_fake["e5"] - layers_source["e5"]),
            [1, 2, 3])
        const_loss = tf.reduce_sum(const_loss1 + const_loss2 + const_loss3 +
                                   const_loss4) * self.Lconst_penalty
        const_loss = (tf.reduce_sum(const_loss1)) * self.Lconst_penalty
        T_loss = tf.reduce_sum(l1_loss + kl_loss)
        T_loss2 = tf.reduce_sum(l1_loss2 + kl_loss2)
        T_loss3 = tf.reduce_sum(l1_loss3 + kl_loss3)
        T_loss4 = tf.reduce_sum(l1_loss4 + kl_loss4)
        T_loss5 = tf.reduce_sum(l1_loss5 + kl_loss5)

        #d_loss_real_summary = tf.summary.scalar("d_loss_real", d_loss_real)
        #d_loss_fake_summary = tf.summary.scalar("d_loss_fake", d_loss_fake)
        #category_loss_summary = tf.summary.scalar("category_loss", category_loss)
        #cheat_loss_summary = tf.summary.scalar("cheat_loss", cheat_loss)
        #l1_loss_summary = tf.summary.scalar("l1_loss", l1_loss)
        real_category_loss_summary = tf.summary.scalar(
            "real_category_loss", tf.reduce_sum(real_category_loss))
        #const_loss_summary = tf.summary.scalar("const_loss", const_loss)
        #d_loss_summary = tf.summary.scalar("d_loss", d_loss)
        T_loss_summary = tf.summary.scalar("T_loss", T_loss)
        T_loss2_summary = tf.summary.scalar("T_loss2", T_loss2)
        T_loss3_summary = tf.summary.scalar("T_loss3", T_loss3)
        T_loss4_summary = tf.summary.scalar("T_loss4", T_loss4)
        T_loss5_summary = tf.summary.scalar("T_loss5", T_loss5)
        l1_loss_summary = tf.summary.scalar("l1_loss", tf.reduce_sum(l1_loss))
        l1_loss2_summary = tf.summary.scalar("l1_loss2",
                                             tf.reduce_sum(l1_loss2))
        kl_loss_summary = tf.summary.scalar("kl_loss", kl_loss_1)
        #kl_loss2_summary = tf.summary.scalar("kl_loss2", kl_loss2_1)
        #kl_loss_fake_AB_summary = tf.summary.scalar("kl_loss_fake_AB", kl_loss_fake_AB_1)
        const_loss_summary = tf.summary.scalar("const_loss_loss", const_loss)
        All_merged_summary = tf.summary.merge([
            l1_loss_summary, l1_loss2_summary, T_loss_summary, kl_loss_summary,
            const_loss_summary, real_category_loss_summary, T_loss2_summary,
            T_loss3_summary, T_loss4_summary, T_loss5_summary
        ])
        #tv_loss_summary = tf.summary.scalar("tv_loss", tv_loss)

        #d_merged_summary = tf.summary.merge([d_loss_real_summary, d_loss_fake_summary,
        #                                     category_loss_summary, d_loss_summary])
        #g_merged_summary = tf.summary.merge([cheat_loss_summary, l1_loss_summary,
        #                                     fake_category_loss_summary,
        #                                     const_loss_summary,
        #                                     g_loss_summary, tv_loss_summary])

        # expose useful nodes in the graph as handles globally
        input_handle = InputHandle(real_data=real_data,
                                   embedding_ids=embedding_ids,
                                   no_target_data=no_target_data,
                                   no_target_ids=no_target_ids)

        loss_handle = LossHandle(
            T_loss=T_loss,
            T_loss2=T_loss2,
            T_loss3=T_loss3,
            T_loss4=T_loss4,
            T_loss5=T_loss5,
            #const_loss=const_loss,
            kl_loss=kl_loss,
            l1_loss=l1_loss
            #category_loss=category_loss,
            #cheat_loss=cheat_loss,
        )

        eval_handle = EvalHandle(encoder=target_gaussian2,
                                 generator=fake_target,
                                 generator2=fake_target_shuffle,
                                 target=real_A,
                                 source=real_B,
                                 embedding=embedding,
                                 gaussian_params=target_gaussian1_shuffle)

        summary_handle = SummaryHandle(T_sum=All_merged_summary)

        # those operations will be shared, so we need
        # to make them visible globally
        setattr(self, "input_handle", input_handle)
        setattr(self, "loss_handle", loss_handle)
        setattr(self, "eval_handle", eval_handle)
        setattr(self, "summary_handle", summary_handle)
Esempio n. 46
0
def detection_targets_graph(proposals, gt_class_ids, gt_boxes, config):
    """Generates detection targets for one image. Subsamples proposals and
    generates target class IDs, bounding box deltas for each.

    Inputs:
    proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [MAX_GT_INSTANCES] int class IDs
    gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates.

    Returns: Target ROIs and corresponding class IDs, bounding box shifts
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded.
    deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
            Class-specific bbox refinments.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    # Assertions
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove zero padding
    proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = tf.boolean_mask(gt_class_ids,
                                   non_zeros,
                                   name="trim_gt_class_ids")

    # Compute overlaps matrix [proposals, gt_boxes]
    overlaps = overlaps_graph(proposals, gt_boxes)

    # Determine postive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds.
    negative_indices = tf.where(roi_iou_max < 0.5)[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # Negative ROIs. Add enough to maintain positive:negative ratio.
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32),
                             tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
    roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1)
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = KerasRFCN.Utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])

    return rois, roi_gt_class_ids, deltas
Esempio n. 47
0
 def _get_randomized_indices(self):
     """Generates randomized indices into a sequence of a specific length."""
     indices = tf.range(0, self._dataset_info.sequence_size)
     indices = tf.random_shuffle(indices)
     indices = tf.slice(indices, begin=[0], size=[self._example_size])
     return indices
Esempio n. 48
0
    def crop_proposal():
        rand_vec = lambda minval, maxval: tf.random_uniform(shape=(
            ssd_constants.NUM_CROP_PASSES, 1),
                                                            minval=minval,
                                                            maxval=maxval,
                                                            dtype=tf.float32)

        width, height = rand_vec(0.3, 1), rand_vec(0.3, 1)
        left, top = rand_vec(0, 1 - width), rand_vec(0, 1 - height)

        right = left + width
        bottom = top + height

        ltrb = tf.concat([left, top, right, bottom], axis=1)

        min_iou = tf.random_shuffle(ssd_constants.CROP_MIN_IOU_CHOICES)[0]
        ious = calc_iou_tensor(ltrb, boxes)

        # discard any bboxes whose center not in the cropped image
        xc, yc = [
            tf.tile(0.5 * (boxes[:, i + 0] + boxes[:, i + 2])[tf.newaxis, :],
                    (ssd_constants.NUM_CROP_PASSES, 1)) for i in range(2)
        ]

        masks = tf.reduce_all(tf.stack([
            tf.greater(xc, tf.tile(left, (1, num_boxes))),
            tf.less(xc, tf.tile(right, (1, num_boxes))),
            tf.greater(yc, tf.tile(top, (1, num_boxes))),
            tf.less(yc, tf.tile(bottom, (1, num_boxes))),
        ],
                                       axis=2),
                              axis=2)

        # Checks of whether a crop is valid.
        valid_aspect = tf.logical_and(tf.less(height / width, 2),
                                      tf.less(height / width, 2))
        valid_ious = tf.reduce_all(tf.greater(ious, min_iou),
                                   axis=1,
                                   keepdims=True)
        valid_masks = tf.reduce_any(masks, axis=1, keepdims=True)

        valid_all = tf.cast(
            tf.reduce_all(tf.concat([valid_aspect, valid_ious, valid_masks],
                                    axis=1),
                          axis=1), tf.int32)

        # One indexed, as zero is needed for the case of no matches.
        index = tf.range(1, 1 + ssd_constants.NUM_CROP_PASSES, dtype=tf.int32)

        # Either one-hot, or zeros if there is no valid crop.
        selection = tf.equal(tf.reduce_max(index * valid_all), index)

        use_crop = tf.reduce_any(selection)
        output_ltrb = tf.reduce_sum(tf.multiply(
            ltrb,
            tf.tile(tf.cast(selection, tf.float32)[:, tf.newaxis], (1, 4))),
                                    axis=0)
        output_masks = tf.reduce_any(tf.logical_and(
            masks, tf.tile(selection[:, tf.newaxis], (1, num_boxes))),
                                     axis=0)

        return use_crop, output_ltrb, output_masks
Esempio n. 49
0
def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks,
                            config):
    """Generates detection targets for one image. Subsamples proposals and
    generates target class IDs, bounding box deltas, and masks for each.
    Inputs:
    proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [MAX_GT_INSTANCES] int class IDs
    gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates.
    gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type.
    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded.
    deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
            Class-specific bbox refinements.
    masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox
           boundaries and resized to neural network output size.
    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    # Assertions
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove zero padding
    proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = tf.boolean_mask(gt_class_ids,
                                   non_zeros,
                                   name="trim_gt_class_ids")
    gt_masks = tf.gather(gt_masks,
                         tf.where(non_zeros)[:, 0],
                         axis=2,
                         name="trim_gt_masks")

    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = tf.where(gt_class_ids < 0)[:, 0]
    non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]
    crowd_boxes = tf.gather(gt_boxes, crowd_ix)
    crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2)
    gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)
    gt_boxes = tf.gather(gt_boxes, non_crowd_ix)
    gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2)

    # Compute overlaps matrix [proposals, gt_boxes]
    overlaps = overlaps_graph(proposals, gt_boxes)

    # Compute overlaps with crowd boxes [anchors, crowds]
    crowd_overlaps = overlaps_graph(proposals, crowd_boxes)
    crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
    no_crowd_bool = (crowd_iou_max < 0.001)

    # Determine positive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds.
    negative_indices = tf.where(
        tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # Negative ROIs. Add enough to maintain positive:negative ratio.
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32),
                             tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
    roi_gt_box_assignment = tf.cond(
        tf.greater(tf.shape(positive_overlaps)[1], 0),
        true_fn=lambda: tf.argmax(positive_overlaps, axis=1),
        false_fn=lambda: tf.cast(tf.constant([]), tf.int64))
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # Assign positive ROIs to GT masks
    # Permute masks to [N, height, width, 1]
    transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)
    # Pick the right mask for each ROI
    roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)

    # Compute mask targets
    boxes = positive_rois
    if config.USE_MINI_MASK:
        # Transform ROI coordinates from normalized image space
        # to normalized mini-mask space.
        y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)
        gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1)
        gt_h = gt_y2 - gt_y1
        gt_w = gt_x2 - gt_x1
        y1 = (y1 - gt_y1) / gt_h
        x1 = (x1 - gt_x1) / gt_w
        y2 = (y2 - gt_y1) / gt_h
        x2 = (x2 - gt_x1) / gt_w
        boxes = tf.concat([y1, x1, y2, x2], 1)
    box_ids = tf.range(0, tf.shape(roi_masks)[0])
    masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes,
                                     box_ids, config.MASK_SHAPE)
    # Remove the extra dimension from masks.
    masks = tf.squeeze(masks, axis=3)

    # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
    # binary cross entropy loss.
    masks = tf.round(masks)

    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])
    masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)])

    return rois, roi_gt_class_ids, deltas, masks
Esempio n. 50
0
    def _make_dataset(self,
                      binaries_fname_pattern,
                      data_augmentation=False,
                      shuffle=True):
        """Creates a CIFAR-100 data set (helper used by ``.make_*_datset`` below).

    Args:
        binaries_fname_pattern (str): Pattern of the ``.bin`` files from which
            to load images and labels (e.g. ``some/path/data_batch_*.bin``).
        data_augmentation (bool): Whether to apply data augmentation operations.
        shuffle (bool):  Switch to turn on or off shuffling of the data set.
            Defaults to ``True``.

    Returns:
        A tf.data.Dataset yielding batches of CIFAR-100 data.
    """
        # Set number of bytes to read.
        label_bytes = 1
        label_offset = 1
        num_classes = 100
        depth = 3
        image_size = 32
        image_bytes = image_size * image_size * depth
        record_bytes = label_bytes + label_offset + image_bytes

        def parse_func(raw_record):
            """Function parsing data from raw binary records."""
            # Decode raw_record.
            record = tf.reshape(tf.decode_raw(raw_record, tf.uint8),
                                [record_bytes])
            label = tf.cast(tf.slice(record, [label_offset], [label_bytes]),
                            tf.int32)
            depth_major = tf.reshape(
                tf.slice(record, [label_bytes], [image_bytes]),
                [depth, image_size, image_size])
            image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

            # Add image pre-processing.
            if data_augmentation:
                image = tf.image.resize_image_with_crop_or_pad(
                    image, image_size + 4, image_size + 4)
                image = tf.random_crop(image, [32, 32, 3])
                image = tf.image.random_flip_left_right(image)
                image = tf.image.random_brightness(image, max_delta=63. / 255.)
                image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
                image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
            else:
                image = tf.image.resize_image_with_crop_or_pad(image, 32, 32)

            image = tf.image.per_image_standardization(image)
            label = tf.squeeze(tf.one_hot(label, depth=num_classes))
            return image, label

        with tf.name_scope(self._name):
            with tf.device('/cpu:0'):
                filenames = tf.matching_files(binaries_fname_pattern)
                filenames = tf.random_shuffle(filenames)
                data = tf.data.FixedLengthRecordDataset(
                    filenames=filenames, record_bytes=record_bytes)
                data = data.map(
                    parse_func,
                    num_parallel_calls=(8 if data_augmentation else 4))
                if shuffle:
                    data = data.shuffle(buffer_size=20000)
                data = data.batch(self._batch_size, drop_remainder=True)
                data = data.prefetch(buffer_size=4)
                return data
Esempio n. 51
0
        else:
            x = np.random.normal(3.0, 0.6)
            y = np.random.normal(1.0, 0.6)
        xy.append([x, y])

    return xy


# input data tensor를 생성한다
n = 1000
tf.reset_default_graph()
inputXY = tf.constant(createData(n))

# 초기 중심 좌표를 설정한다.
k = 5
tmpXY = tf.random_shuffle(inputXY)  # input data를 shuffling 한다
tmpCent = tf.slice(tmpXY, [0, 0], [k, -1])  # 앞의 k개를 중심좌표로 설정한다
initCent = tf.Variable(tmpCent)  # 초기 중심좌표 텐서

# 데이터 ~ 중심좌표 사이의 거래 계산을 위해 dimension을 맞춘다. 3-차원 텐서.
#expXY.get_shape()   --> (D0, D1, D2) = (1, n, 2) : D0을 확장함
#expCent.get_shape() --> (D0, D1, D2) = (k, 1, 2) : D1을 확장함
expXY = tf.expand_dims(inputXY, 0)  # D0-축을 확장한다
expCent = tf.expand_dims(initCent, 1)  # D1-축을 확장한다

# 데이터와 중삼좌표 사이의 거리를 계산한다
tmpDist = tf.square(tf.subtract(expXY, expCent))
dist = tf.sqrt(tf.reduce_sum(tmpDist, 2))  # D2 축으로 합침
error = tf.reduce_sum(dist)  # 거리의 총합을 error로 정의한다

# 각 데이터를 거리가 작은 중점에 assign 한다.
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-l",
                        "--learner-hosts",
                        type=str,
                        required=True,
                        help="Comma-separated list of hostname:port pairs")
    parser.add_argument("-e",
                        "--explorer-hosts",
                        type=str,
                        required=True,
                        help="Comma-separated list of hostname:port pairs")
    parser.add_argument("-j",
                        "--job-name",
                        type=str,
                        default="learner",
                        help="One of 'learner', 'explorer'")
    parser.add_argument("-t",
                        "--task-index",
                        type=int,
                        default=0,
                        help="Index of task within the job")
    parser.add_argument(
        "-s",
        "--steps-per-explorer",
        type=int,
        default=1000000,
        help=
        "Max. steps an explorer should make in its env (in total before stopping)."
    )
    parser.add_argument(
        "-m",
        "--max-steps-per-episode",
        type=int,
        default=100,
        help="Max. steps an explorer should make in one episode.")
    parser.add_argument(
        "-b",
        "--buffer-size",
        type=int,
        default=1000,
        help=
        "Number of time steps to store (round robin) in the local buffers of each explorer. "
        "The size of the global buffer will be this number times the number of explorers."
    )
    parser.add_argument(
        "--learn-batch-size",
        type=int,
        default=16,
        help=
        "Size of a batch (number of episodes) to pull randomly from the main buffer "
        "for each learner iteration.")
    parser.add_argument(
        "-f",
        "--upload-frequency",
        type=int,
        default=4,
        help=
        "Every how many episodes does an explorer upload its local buffer of episodes "
        "to the learners?")
    parser.add_argument("--num-hidden",
                        type=int,
                        default=10,
                        help="Number of hidden nodes.")
    parser.add_argument("-g",
                        "--gamma",
                        type=float,
                        default=0.97,
                        help="The discount factor gamma (default 0.9).")
    parser.add_argument(
        "-a",
        "--learning-rate",
        type=float,
        default=0.0005,
        help="The learning rate (alpha) to use for optimizing the cost.")
    args = parser.parse_args()
    learner_hosts = args.learner_hosts.split(",")
    explorer_hosts = args.explorer_hosts.split(",")

    # Create a cluster from the given hosts (learners and explorers).
    cluster = tf.train.ClusterSpec({
        "learner": learner_hosts,
        "explorer": explorer_hosts
    })

    # Create and start a server for the local task.
    server = tf.train.Server(cluster,
                             job_name=args.job_name,
                             task_index=args.task_index)

    # simple 1 hidden layer, feed-forward network
    num_inputs = 1  # input is always [1.0] -> blind env
    num_hidden = args.num_hidden
    num_out = 2 + 1  # left and right actions + value function
    # 1 disc. return, 1 action (0=left, 1=right),
    len_buffer_record = 2

    #config = tf.ConfigProto(log_device_placement=True)
    ##config.gpu_options.allow_growth = True  # need to set this in order to be able to run locally with GPU
    #config.gpu_options.per_process_gpu_memory_fraction = 0.4

    # the global main policy: pi (live on the learner(s))
    # - explorers sync their own policies (mu) with this at the beginning of an episode
    with tf.device(
            tf.train.replica_device_setter(
                ps_tasks=len(learner_hosts),
                ps_device="/job:learner",
                worker_device="/job:explorer/task:0")):
        weights_1_pi = tf.Variable(tf.truncated_normal(shape=(num_inputs,
                                                              num_hidden),
                                                       stddev=0.01),
                                   name="pi-W1")
        biases_1_pi = tf.Variable(tf.zeros(shape=(num_hidden, )), name="pi-b1")
        weights_2_pi = tf.Variable(tf.truncated_normal(shape=(num_hidden,
                                                              num_out),
                                                       stddev=0.01),
                                   name="pi-W2")
        biases_2_pi = tf.Variable(tf.zeros(shape=(num_out, )), name="pi-b2")

    # main experience buffer (on central learner)
    # - create experience buffer in both explorer and learner, but host it on learner
    # - each explorer writes to a certain chunk in round robin fashion
    size_main_experience_buffer = args.buffer_size * len(explorer_hosts)
    with tf.device("/job:learner/task:0"):
        main_experience_buffer = tf.Variable(tf.zeros(
            [size_main_experience_buffer, len_buffer_record]),
                                             name="global-episode-buffer")
        global_step = tf.train.get_or_create_global_step()

    if args.job_name == "explorer":
        # local policy (mu) -> all zero; will be sync'd with pi anyway at start of each episode
        weights_1_mu = tf.Variable(tf.zeros(shape=(num_inputs, num_hidden)),
                                   name="mu-W1")
        biases_1_mu = tf.Variable(tf.zeros(shape=(num_hidden, )), name="mu-b1")
        weights_2_mu = tf.Variable(tf.zeros(shape=(num_hidden, num_out)),
                                   name="mu-W2")
        biases_2_mu = tf.Variable(tf.zeros(shape=(num_out, )), name="mu-b2")

        # ops that sync from the main policy (pi) (using locking)
        # - must fetch these after a reset of the env (before querying the first action in each episode)
        sync_ops = [
            tf.assign(weights_1_mu, weights_1_pi, name="sync-W1"),
            tf.assign(biases_1_mu, biases_1_pi, name="sync-b1"),
            tf.assign(weights_2_mu, weights_2_pi, name="sync-W2"),
            tf.assign(biases_2_mu, biases_2_pi, name="sync-b2")
        ]
        # number of actions (log-action-probs) to sample
        num_action_samples = tf.placeholder(dtype=tf.int32, shape=())
        # Buffer to store n (capacity) episodes of experiences (round-robin).
        # This one gets inserted into the learners global memory after each m (upload-frequency) episodes.
        # rank0=episode, rank1=step in episode, rank2=[action(0=left, 1=right), reward, mu(a)]
        experience_buffer = tf.Variable(tf.zeros(
            [args.buffer_size, len_buffer_record]),
                                        name="episode-buffer")
        experience_buffer_idx = tf.placeholder(dtype=tf.int32, shape=())
        # In case we would like to use LSTM -> need to pass the initial internal state to learner
        # so it can replay the episode through pi (instead of mu).
        # init_internal_buffer = tf.Variable(tf.zeros([args.buffer_size, num_internal_state]),
        #                                   name="init-internal-buffer")

        # upload op (from local experience buffer to global one)
        start = args.task_index * args.buffer_size
        stop = start + args.buffer_size
        experience_upload = tf.assign(main_experience_buffer[start:stop, :],
                                      experience_buffer)

        # forward pass -> let local explorer handle this (as it's needed right here for querying actions)
        hidden_out = tf.add(
            tf.matmul(tf.ones(shape=(num_action_samples, num_inputs)),
                      weights_1_mu), biases_1_mu)
        logits = tf.add(tf.matmul(hidden_out, weights_2_mu), biases_2_mu)
        action_prob = tf.nn.softmax(
            logits[:, :2])  # first two outputs are action logits
        action_distr = tf.distributions.Bernoulli(probs=action_prob[:, 1])
        actions = action_distr.sample(sample_shape=num_action_samples)

        # store incoming step (a, R) in local experience buffer
        a_in = tf.placeholder(dtype=tf.float32, shape=(None, ),
                              name="a-in")  # 0.0=left, 1.0=right
        returns_in = tf.placeholder(
            dtype=tf.float32, shape=(None, ),
            name="returns-in")  # None=timesteps in the episode
        # concat returns and log_aps within each timestep
        episode = tf.concat(
            [tf.expand_dims(a_in, 1),
             tf.expand_dims(returns_in, 1)], 1)
        episode_len = tf.shape(episode)[0]
        stop = experience_buffer_idx + episode_len
        # don't have to lock as the only one that's ever touching the local buffer is ourselves
        add_episode = tf.cond(
            stop <= args.buffer_size,
            # true fn
            lambda: tf.group(
                tf.assign(experience_buffer[experience_buffer_idx:stop],
                          episode,
                          use_locking=False)),
            # false fn
            lambda: tf.group(
                tf.assign(experience_buffer[experience_buffer_idx:],
                          episode[:args.buffer_size - experience_buffer_idx],
                          use_locking=False),
                tf.assign(experience_buffer[:episode_len - (
                    args.buffer_size - experience_buffer_idx)],
                          episode[args.buffer_size - experience_buffer_idx:],
                          use_locking=False)))

        # create our own private env
        env = Env()

        total_steps = 0
        num_episodes = 0

        with tf.train.MonitoredTrainingSession(
                master=server.target,
                is_chief=(args.task_index == 0),
                #config=config,
                hooks=[]) as mon_sess:
            while total_steps < args.steps_per_explorer:
                rs = []  # discounted accum. rewards over one episode
                as_ = []  # the actual actions taken
                # reset the env
                env.reset()
                episode_steps = 0
                buffer_idx = 0
                # update our mu with pi from learner
                fetches = mon_sess.run(sync_ops)

                while episode_steps < args.max_steps_per_episode and total_steps < args.steps_per_explorer:
                    s = env.state
                    a = mon_sess.run(actions,
                                     feed_dict={num_action_samples: 1})
                    a = a[0][0]  # a=0 for 'left', a=1 for 'right'
                    as_.append(a)
                    r, is_terminal = env.execute(a)
                    rs.append(r)

                    print(
                        "{:03d} explorer {}: s={} action {} (1=right) s'={} is-term={}"
                        .format(total_steps, args.task_index, s, a, env.state,
                                is_terminal))
                    total_steps += 1
                    episode_steps += 1

                    if is_terminal:
                        # calculate discounted accumulated rewards (returns)
                        returns = discount(rs, args.gamma)

                        # add episode to our buffer
                        mon_sess.run(
                            [add_episode],
                            feed_dict={
                                returns_in: returns,
                                a_in: as_,
                                experience_buffer_idx: buffer_idx
                            })
                        env.reset()
                        buffer_idx = (buffer_idx + len(rs)) % args.buffer_size
                        rs = []
                        as_ = []
                        episode_steps = 0
                        num_episodes += 1
                        fetches = sync_ops
                        if num_episodes % args.upload_frequency == 0:
                            print(
                                "num_episodes={}: uploading local buffer to global buffer"
                                .format(num_episodes))
                            fetches.append(experience_upload)
                        fetches = mon_sess.run(fetches)
        print("Explorer {} is done!".format(args.task_index))

    # - every learner iteration, it samples randomly from the main buffer and learns
    else:
        # build the pi-network (similar to mu-network above)
        #with tf.device("/gpu:0"):
        hidden_out = tf.add(
            tf.matmul(tf.ones(shape=(args.learn_batch_size, num_inputs)),
                      weights_1_pi), biases_1_pi)
        logits = tf.add(tf.matmul(hidden_out, weights_2_pi), biases_2_pi)
        action_right_prob = tf.nn.softmax(
            logits[:, :2])[:,
                           1]  # first two outputs are action logits (1=right)
        avg_action_right_prob = tf.reduce_mean(action_right_prob)
        values = logits[:, 2:3]  # last output is the state-value

        # for now: do simple REINFORCE (add v-trace later or directly to tensorforce as it's not really different)
        # get a random batch from the main buffer
        indexes = tf.random_shuffle(tf.range(size_main_experience_buffer))
        sample = tf.gather(main_experience_buffer,
                           indexes[:args.learn_batch_size])
        # separate action (0=left, 1=right) and discounted accum. reward
        actions, returns = tf.split(sample,
                                    num_or_size_splits=len_buffer_record,
                                    axis=1)
        # probability of the action actually taken
        action_prob = tf.abs(
            tf.subtract(actions, tf.ones(tf.shape(actions))) +
            action_right_prob)
        log_action_prob = tf.log(action_prob)
        advantage = (returns - values)

        # define our loss function
        alpha_1 = 0.5  # log-action-prob loss
        alpha_2 = 0.4  # value function loss
        alpha_3 = 0.1  # regularization
        loss = - alpha_1 * tf.reduce_mean(tf.multiply(log_action_prob, advantage)) + \
               alpha_2 * tf.reduce_mean(0.5 * tf.square(advantage)) + \
               alpha_3 * 0  # TODO: add regularization

        train_op = tf.train.AdagradOptimizer(args.learning_rate).minimize(
            loss, global_step=global_step)

        with tf.train.MonitoredTrainingSession(master=server.target,
                                               is_chief=(args.task_index == 0),
                                               hooks=[]) as mon_sess:
            while not mon_sess.should_stop():
                sample_out, _, loss_out, g_step, avg_right_prob_out = mon_sess.run(
                    [
                        sample, train_op, loss, global_step,
                        avg_action_right_prob
                    ])
                print("task {} step {} loss {} avg-right-prob={}".format(
                    args.task_index, g_step, loss_out, avg_right_prob_out))
        print("Learner {} is done!".format(args.task_index))
Esempio n. 53
0
    def batch_inputs(self, dataset, train):
        """Contruct batches of training or evaluation examples from the image input_data.
  
        Args:
          dataset: instance of Dataset class specifying the input_data.
            See input_data.py for details.
          batch_size: integer
          train: boolean
          num_preprocess_threads: integer, total number of preprocessing threads
          num_readers: integer, number of parallel readers
  
        Returns:
          images: 4-D float Tensor of a batch of images
          labels: 1-D integer Tensor of [batch_size].
  
        Raises:
          ValueError: if data is not found
        """
        with tf.name_scope('batch_processing'):
            data_files = dataset.data_files()
            if data_files is None:
                raise ValueError('No data files found for this input_data')

            # Create filename_queue
            if train:
                filename_queue = tf.train.string_input_producer(data_files,
                                                                shuffle=True,
                                                                capacity=16)
            else:
                filename_queue = tf.train.string_input_producer(data_files,
                                                                shuffle=False,
                                                                capacity=1)

            # Approximate number of examples per shard.
            examples_per_shard = 1024
            # Size the random shuffle queue to balance between good global
            # mixing (more examples) and memory use (fewer examples).
            # 1 image uses 299*299*3*4 bytes = 1MB
            # The default input_queue_memory_factor is 16 implying a shuffling queue
            # size: examples_per_shard * 16 * 1MB = 17.6GB
            min_queue_examples = examples_per_shard * self.input_queue_memory_factor
            if train:
                examples_queue = tf.RandomShuffleQueue(
                    capacity=min_queue_examples + 3 * self.batch_size,
                    min_after_dequeue=min_queue_examples,
                    dtypes=[tf.string])
            else:
                examples_queue = tf.FIFOQueue(capacity=examples_per_shard +
                                              3 * self.batch_size,
                                              dtypes=[tf.string])

            # Create multiple readers to populate the queue of examples.
            if self.num_readers > 1:
                enqueue_ops = []
                for _ in range(self.num_readers):
                    reader = dataset.reader()
                    _, value = reader.read(filename_queue)
                    enqueue_ops.append(examples_queue.enqueue([value]))

                tf.train.queue_runner.add_queue_runner(
                    tf.train.queue_runner.QueueRunner(examples_queue,
                                                      enqueue_ops))
                example_serialized = examples_queue.dequeue()
            else:
                reader = dataset.reader()
                _, example_serialized = reader.read(filename_queue)

            pos_queue = None
            neg_queue = None

            if self.batch_size < 2:
                pos_queue = tf.RandomShuffleQueue(
                    name="pos-queue",
                    capacity=10,
                    min_after_dequeue=5,
                    dtypes=[tf.float32, tf.float32, tf.string])
                neg_queue = tf.RandomShuffleQueue(
                    name="neg-queue",
                    capacity=10,
                    min_after_dequeue=5,
                    dtypes=[tf.float32, tf.float32, tf.string])

            pos_queue_enq = []
            neg_queue_enq = []

            with tf.name_scope('split-merge'):
                if train and self.ensure_posneg_balance:
                    images_and_masks = []
                    for thread_id in range(self.num_preprocess_threads):
                        # Parse a serialized Example proto to extract the image and metadata.
                        image_buffer, mask_buffer, img_name_ = self.parse_example_proto(
                            example_serialized)

                        image_ = self.image_preprocessing(
                            image_buffer,
                            img_size=(self.input_size[0], self.input_size[1]),
                            num_channels=self.input_size[2])
                        mask_ = self.image_preprocessing(
                            mask_buffer,
                            img_size=(self.mask_size[0], self.mask_size[1]),
                            num_channels=self.mask_size[2])

                        image_ = tf.expand_dims(image_, 0)
                        mask_ = tf.expand_dims(mask_, 0)
                        img_name_ = tf.expand_dims(img_name_, 0)

                        img_shape = tf.TensorShape([
                            image_.shape[1], image_.shape[2], image_.shape[3]
                        ])
                        mask_shape = tf.TensorShape(
                            [mask_.shape[1], mask_.shape[2], mask_.shape[3]])
                        img_name_shape = tf.TensorShape([])

                        # initialize pos/neg queues with proper shape size on first
                        if pos_queue is None or neg_queue is None:
                            pos_queue = tf.RandomShuffleQueue(
                                name="pos-queue",
                                capacity=10,
                                min_after_dequeue=5,
                                dtypes=[tf.float32, tf.float32, tf.string],
                                shapes=[img_shape, mask_shape, img_name_shape])
                            neg_queue = tf.RandomShuffleQueue(
                                name="neg-queue",
                                capacity=10,
                                min_after_dequeue=5,
                                dtypes=[tf.float32, tf.float32, tf.string],
                                shapes=[img_shape, mask_shape, img_name_shape])

                        is_pos = tf.squeeze(
                            tf.reduce_sum(mask_, [1, 2], keep_dims=False))

                        neg_mask = tf.less_equal(is_pos, 0)

                        pos_idx = tf.reshape(
                            tf.where([tf.logical_not(neg_mask)]), [-1])
                        neg_idx = tf.reshape(tf.where([neg_mask]), [-1])

                        pos_data = [
                            tf.gather(image_, pos_idx),
                            tf.gather(mask_, pos_idx),
                            tf.gather(img_name_, pos_idx)
                        ]
                        neg_data = [
                            tf.gather(image_, neg_idx),
                            tf.gather(mask_, neg_idx),
                            tf.gather(img_name_, neg_idx)
                        ]

                        pos_queue_enq.append(pos_queue.enqueue_many(pos_data))
                        neg_queue_enq.append(neg_queue.enqueue_many(neg_data))

                    tf.train.queue_runner.add_queue_runner(
                        tf.train.queue_runner.QueueRunner(
                            pos_queue, pos_queue_enq))
                    tf.train.queue_runner.add_queue_runner(
                        tf.train.queue_runner.QueueRunner(
                            neg_queue, neg_queue_enq))

                    if self.batch_size >= 2:
                        if self.batch_size % 2 != 0:
                            raise Exception(
                                "'batch_size' mod 2 != 0 ! only even batch sizes supported at the moment"
                            )

                        num_deque = int(self.batch_size / 2)

                        pos_data = pos_queue.dequeue_many(num_deque)
                        neg_data = neg_queue.dequeue_many(num_deque)

                        concat_data = [
                            tf.concat([pos_data[0], neg_data[0]],
                                      axis=0,
                                      name='Concat-img'),
                            tf.concat([pos_data[1], neg_data[1]],
                                      axis=0,
                                      name='Concat-mask'),
                            tf.concat([pos_data[2], neg_data[2]],
                                      axis=0,
                                      name='Concat-img-name')
                        ]

                        # randomly permute within batch size (is this even necessary ??)
                        idx = tf.Variable(range(0, self.batch_size),
                                          trainable=False,
                                          dtype=tf.int32)
                        idx = tf.random_shuffle(idx)

                        images = tf.gather(concat_data[0], idx)
                        masks = tf.gather(concat_data[1], idx)
                        img_names = tf.gather(concat_data[2], idx)

                    else:
                        # positive only
                        #images, masks, img_names = pos_queue.dequeue()

                        # negative only
                        #images, masks, img_names = neg_queue.dequeue()

                        # mix 50/50
                        counter = tf.Variable(initial_value=0,
                                              trainable=False,
                                              dtype=tf.int32)

                        counter = tf.assign_add(counter, 1)
                        condition_term = tf.equal(tf.mod(counter, 2),
                                                  tf.constant(0))
                        images, masks, img_names = tf.cond(
                            condition_term, lambda: pos_queue.dequeue(),
                            lambda: neg_queue.dequeue())

                        if self.use_random_rotation:
                            images.set_shape(
                                tensor_shape.as_shape([None, None, 1]))
                            masks.set_shape(
                                tensor_shape.as_shape([None, None, 1]))

                            # randomly rotate image by 90 degrees
                            rot_factor = tf.random_uniform([1],
                                                           minval=0,
                                                           maxval=3,
                                                           dtype=tf.int32)
                            rot_factor = tf.gather(rot_factor, 0)

                            images = tf.image.rot90(images, k=rot_factor)
                            masks = tf.image.rot90(masks, k=rot_factor)

                        images = tf.expand_dims(images, axis=0)
                        masks = tf.expand_dims(masks, axis=0)
                        img_names = tf.expand_dims(img_names, axis=0)
                else:

                    # Parse a serialized Example proto to extract the image and metadata.
                    image_buffer, mask_buffer, img_names = self.parse_example_proto(
                        example_serialized)

                    images = self.image_preprocessing(
                        image_buffer,
                        img_size=(self.input_size[0], self.input_size[1]),
                        num_channels=self.input_size[2])
                    masks = self.image_preprocessing(
                        mask_buffer,
                        img_size=(self.mask_size[0], self.mask_size[1]),
                        num_channels=1)

                    images = tf.expand_dims(images, axis=0)
                    masks = tf.expand_dims(masks, axis=0)
                    img_names = tf.expand_dims(img_names, axis=0)

            # Reshape images into these desired dimensions.
            images = tf.cast(images, tf.float32)
            masks = tf.cast(masks, tf.float32)

            images.set_shape(
                tensor_shape.as_shape(
                    [self.batch_size, None, None, self.input_size[2]]))
            masks.set_shape(
                tensor_shape.as_shape([
                    self.batch_size, self.input_size[0], self.input_size[1],
                    self.mask_size[2]
                ]))

            # Display the training images in the visualizer.
            tf.summary.image('images', images)
            tf.summary.image('masks', masks)

            return images, masks, img_names
Esempio n. 54
0
for i in range(num_vectors):
    if np.random.random() > 0.5:
        x_values.append(np.random.normal(0.4, 0.7))
        y_values.append(np.random.normal(0.2, 0.8))
    else:
        x_values.append(np.random.normal(0.6, 0.4))
        y_values.append(np.random.normal(0.8, 0.5))
# 將X陣列與Y陣列合併為一項量陣列-> [[x0,y0],[x1,y1]..]
vector_values = list(zip(x_values, y_values))
vectors = tf.constant(vector_values)
# 取得陣列維度大小
n_samples = tf.shape(vector_values)[0]
# 製作一n_samples數量的編號陣列,範圍為0~n_samples-1
sample_range = tf.range(0, n_samples)
# 將編號陣列進行洗牌
random_indices = tf.random_shuffle(sample_range)

begin = [
    0,
]
size = [
    num_clusters,
]
size[0] = num_clusters

# 從洗牌後的編號陣列中取出num_clusters個值,型態為[a1,a2,a3,...]
centroid_indices = tf.slice(random_indices, begin, size)
# 再利用上述值從原陣列中取得num_clusters個中心點,型態為 [[xa,ya],[xb,yb],...]
centroids = tf.Variable(tf.gather(vector_values, centroid_indices))

# 增加維度
Esempio n. 55
0
def model(params, examples, labels, epsilon):
    serp_len = params['serp_len']
    doc_emb_size = params['doc_emb'][-1]
    hidden_state_size = params['hidden_state_size']
    docs = examples['doc_tensors']
    batch_size = docs.shape[0].value
    batch_max_docs = tf.shape(docs)[1]
    docs_per_query = examples['n_docs']

    if params['context_input']:
        to_shuffle = tf.concat([tf.cast(labels[:, :, None], tf.float32), docs],
                               axis=2)
        shuffled = tf.random_shuffle(tf.transpose(to_shuffle, [1, 0, 2]))
        shuffled = tf.transpose(shuffled, [1, 0, 2])
        labels = tf.cast(tf.slice(shuffled, [0, 0, 0], [-1, -1, 1]), tf.int32)
        labels = labels[:, :, 0]
        docs = tf.slice(shuffled, [0, 0, 1], [-1, -1, -1])
    # assert not params['context_input'], 'Context not supported for GRU.'

    result = {
        'docs_per_query': docs_per_query,
    }

    doc_emb = mu._shared_doc_embeddings(docs,
                                        params,
                                        '/main/doc_emb',
                                        inference=True)

    hidden_init = tf.zeros([batch_size, hidden_state_size])
    if params['context_input']:
        context_gru_fn = ru.get_gru_layer(params,
                                          '/main/gru/context',
                                          label_network=False,
                                          inference=True,
                                          reuse_variable_scope=False)
        scan_input = tf.transpose(doc_emb, [1, 0, 2])
        context = tf.scan(context_gru_fn, scan_input, hidden_init)

        ind_nd = tf.concat([docs_per_query - 1,
                            tf.range(batch_size)[:, None]],
                           axis=1)
        hidden_init = tf.gather_nd(context, ind_nd)

    gru_fn = ru.get_gru_layer(params,
                              '/main/gru',
                              label_network=False,
                              inference=True,
                              reuse_variable_scope=False)

    policy = mu.EpsilonGreedy(epsilon, batch_size, batch_max_docs,
                              docs_per_query)
    hidden_state = hidden_init
    #tf.zeros([n_docs, hidden_state_size])
    serp = []
    serp_labels = []
    serp_ind = []
    for i in range(serp_len):
        hidden_states = tf.tile(hidden_state[:, None, :],
                                [1, batch_max_docs, 1])
        score_input = tf.concat([hidden_states, doc_emb], axis=2)
        scores = mu._create_subnetwork(score_input,
                                       params,
                                       subnetwork_name='/main/scoring',
                                       label_network=False,
                                       reuse_variable_scope=i > 0,
                                       inference=True)

        action = policy.choose(scores)
        serp_ind.append(action)

        nd_ind = tf.stack([tf.range(batch_size, dtype=tf.int64), action],
                          axis=1)
        select_doc = tf.gather_nd(docs, nd_ind)
        select_labels = tf.gather_nd(labels, nd_ind)[:, None]
        tf.summary.scalar('policy/scores/pos_%d' % i,
                          tf.reduce_mean(tf.gather_nd(scores, nd_ind)))

        serp_labels.append(
            tf.where(
                tf.less(i, docs_per_query),
                select_labels,
                tf.zeros([batch_size, 1], dtype=tf.int32),
            ))
        serp.append(select_doc)

        if i < serp_len - 1:
            select_emb = tf.gather_nd(doc_emb, nd_ind)
            hidden_state = gru_fn(hidden_state, select_emb)

    result['serp'] = tf.stack(serp, axis=1)
    result['serp_ind'] = tf.stack(serp_ind, axis=1)
    result['labels'] = tf.concat(serp_labels, axis=1)
    tf.summary.histogram("label/output", result['labels'])

    # if params['context_input']:
    max_docs = params['max_docs']
    padding = tf.convert_to_tensor([[0, 0], [0, max_docs - batch_max_docs],
                                    [0, 0]])
    padded_docs = tf.pad(docs, padding, "CONSTANT")
    padded_docs = tf.reshape(padded_docs,
                             [batch_size, max_docs, docs.shape[2].value])
    result['docs'] = padded_docs

    return result
Esempio n. 56
0
    def generate_curves(self):
        '''
        生成数据
        生成函数输出为浮点型,输入为-2到2之间
        返回:NPRegressionDescription 命名元组
        '''
        # 从均匀分布中随机采样
        num_context = tf.random_uniform(shape=[], minval=3, maxval=self._max_num_context, dtype=tf.int32)

        # 测试过程中,生成更多的点以绘制图像
        if self._testing:
            # 此处需要配合 x_size 进行变换
            num_target = tf.cast(400 / self._x_size, dtype=tf.int32)
            num_total_points = num_target
            # tf.tile: 在同一维度上复制
            # 生成 -2. 到 2. 的步长为 0.01 的数据
            x_values = tf.tile(tf.expand_dims(tf.range(-2., 2., 1. / 100, dtype=tf.float32), axis=0), [self._batch_size, 1])
            x_values = tf.expand_dims(x_values, axis=-1)
            # reshape 成 x_size 的形状
            x_values = tf.reshape(x_values, (self._batch_size, num_total_points, self._x_size))
        else:
            # 训练过程中,随机选择目标点个数与他们的 x 坐标
            num_target = tf.random_uniform(shape=(), minval=0, maxval=self._max_num_context - num_context, dtype=tf.int32)
            num_total_points = num_context + num_target
            x_values = tf.random_uniform([self._batch_size, num_total_points, self._x_size], minval=-2, maxval=2)

        # 设置核函数参数
        if self._random_kernel_parameters:
            # 随机选择参数
            l1 = tf.random_uniform([self._batch_size, self._y_size, self._x_size], 0.1, self._l1_scale)
            sigma_f = tf.random_uniform([self._batch_size, self._y_size], 0.1, self._sigma_scale)
        else:
            # 使用固定参数
            l1 = tf.ones([self._batch_size, self._y_size, self._x_size]) * self._l1_scale
            sigma_f = tf.ones([self._batch_size, self._y_size]) * self._sigma_scale

        # [B, y_size, num_total_points, num_total_points]
        kernel = self._gaussian_kernels(x_values, l1, sigma_f)

        # Cholesky 分解
        cholesky = tf.cast(tf.cholesky(tf.cast(kernel, tf.float64)), tf.float32)

        # 采样
        # [B, y_size, num_total_points, 1]
        y_values = tf.matmul(cholesky, tf.random_uniform([self._batch_size, self._y_size, num_total_points, 1]))
        # 矩阵转置,按照 perm 排列原始维度;tf.squeeze 删除所有大小为 1 的维度
        # [B, num_total_points, y_size]
        y_values = tf.transpose(tf.squeeze(y_values, 3), perm=[0, 2, 1])

        if self._testing:
            target_x = x_values
            target_y = y_values

            idx = tf.random_shuffle(tf.range(num_target))
            # tf.gather: 根据索引从 params 中读取数据
            context_x = tf.gather(params=x_values, indices=idx[:num_context], axis=1)
            context_y = tf.gather(params=y_values, indices=idx[:num_context], axis=1)
        else:
            target_x = x_values[:, :num_target + num_context, :]
            target_y = y_values[:, :num_target + num_context, :]

            context_x = x_values[:, :num_context, :]
            context_y = y_values[:, :num_context, :]

        query = ((context_x, context_y), target_x)

        return NPRegressionDescription(
            query=query,
            target_y=target_y,
            num_total_points=tf.shape(target_x)[1],
            num_context_points=num_context
        )
Esempio n. 57
0
    def _subsampling(self,
                     normalized_rois,
                     gt_bboxes,
                     gt_labels,
                     pos_iou_thresh=0.5,
                     exclusive_iou_tresh=0.1,
                     pos_ratio=0.25):
        """正解データとのIoUを基にRoIをサンプリングする。
        IoUがpos_iou_thresh以上であるRoIをオブジェクトとみなす。
            オブジェクトはサンプルの25%以内とする。(n_samples_per_batch * pos_ratio 以内)
        pos_iou_thresh未満、exclusive_iou_thresh以上は非オブジェクトとみなす。
        exclusive_iou_thresh未満は偶然の一致であり意味なし(難解)なので無視。
        ※論文ではheuristic for hard example mining.と記載されている点。
        バッチ毎のサンプル数はn_samples_per_batch以内とする。
        (n_samples_per_batch未満の場合は、n_samples_per_batchになるよう0パディングする。)

        上記のサンプリングに対応する正解データのラベル、また、BBoxとのオフセットも得る。

        Args:
            normalized_rois (tensor) : RegionProposalLayerで得られたRoI。
                (N, n_rois, 4)
                3軸目は領域の左上と右下の座標が0〜1に正規化された値。
                入力画像サイズの高さ、幅で除算することで正規化された値。
                    (y1, x1, y2, x2)
            gt_bboxes (ndarray) : 正解BBox。
                (N, config.n_max_gt_objects_per_image, 4)
                座標は正規化されていない。
            gt_labels (ndarray) : 正解ラベル。
                (N, config.n_max_gt_objects_per_image)
                ==0:背景データ
                >=1:オブジェクト
        Returns:
            sample_rois (tensor): サンプリングしたRoI。
                (N, n_samples_per_batch, 4)
                3軸目の座標は0〜1に正規化された値。
            sample_gt_offset (tensor): サンプリングしたRoIに対応するBBoxとのオフセット。
                (N, n_samples_per_batch, 4)
                3軸目の座標は0〜1に正規化された値をself.config.bbox_refinement_stdで割ることで標準化した値。
            sample_gt_labels (tensor): サンプリングしたRoIに対応するBBoxのラベル。
                (N, n_samples_per_batch)
        """
        pos_roi_per_batch = round(self.n_samples_per_batch * pos_ratio)

        # gt_bboxesをnormalized_roisに合わせて正規化する。
        # これでIoUが評価出来るようになる。
        input_h = self.config.image_shape[0]
        input_w = self.config.image_shape[1]
        normalized_gt_bboxes = bbox.normalize_bbox(gt_bboxes, input_h, input_w)

        # 入力をバッチ毎に分割
        normalized_rois = tf.split(normalized_rois, self.config.batch_size)
        normalized_gt_bboxes = tf.split(normalized_gt_bboxes,
                                        self.config.batch_size)
        gt_labels = tf.split(gt_labels, self.config.batch_size)

        sample_rois = []
        sample_gt_offsets = []
        sample_gt_labels = []

        for roi, gt_bbox, gt_label in zip(normalized_rois,
                                          normalized_gt_bboxes, gt_labels):
            # 0次元目(バッチサイズ)は不要なので削除
            roi = log.tfprint(roi, "roi: ")
            gt_bbox = log.tfprint(gt_bbox, "gt_bbox: ")
            gt_label = log.tfprint(gt_label, "gt_label: ")

            roi = K.squeeze(roi, 0)
            gt_bbox = K.squeeze(gt_bbox, 0)
            gt_label = K.squeeze(gt_label, 0)

            roi = log.tfprint(roi, "roi_squeezed: ")
            gt_bbox = log.tfprint(gt_bbox, "gt_bbox_squeezed: ")
            gt_label = log.tfprint(gt_label, "gt_label_squeezed: ")

            # ゼロパディング行を除外
            # K.gather(zero, K.squeeze(tf.where(K.any(zero, axis=1)), -1) )
            idx_roi_row = K.flatten(tf.where(K.any(roi, axis=1)))
            idx_gt_bbox = K.flatten(tf.where(K.any(gt_bbox, axis=1)))
            roi = K.gather(roi, idx_roi_row)
            # gt_bboxとgt_labelは行数と行の並びが同じなので同じidxを利用できる
            gt_bbox = K.gather(gt_bbox, idx_gt_bbox)
            gt_label = K.gather(gt_label, idx_gt_bbox)

            gt_bbox = log.tfprint(gt_bbox, "gt_bbox_gathered: ")
            gt_label = log.tfprint(gt_label, "gt_label_gathered: ")

            # IoUを求める。
            # (n_rois, )
            ious = bbox.get_iou_K(roi, gt_bbox)
            ious = log.tfprint(ious, "ious: ")

            # 各RoI毎にIoU最大のBBoxの位置を得る
            idx_max_gt = K.argmax(ious, axis=1)
            idx_max_gt = log.tfprint(idx_max_gt, "idx_max_gt: ")

            max_iou = K.max(ious, axis=1)  # max_iouの行数はroiと同じになる
            max_iou = log.tfprint(max_iou, "max_iou: ")
            idx_pos = K.flatten(tf.where(max_iou >= pos_iou_thresh))
            # positiveサンプル数をpos_roi_per_batch以内に制限
            limit_pos = K.minimum(pos_roi_per_batch, K.shape(idx_pos)[0])
            idx_pos = K.switch(
                K.shape(idx_pos)[0] > 0,
                tf.random_shuffle(idx_pos)[:limit_pos], idx_pos)
            limit_pos = log.tfprint(limit_pos, "limit_pos: ")
            idx_pos = log.tfprint(idx_pos, "idx_pos: ")

            # negativeサンプル数を
            #   n_samples_per_batch - pos_roi_per_batch
            # に制限
            idx_neg = K.flatten(
                tf.where((max_iou < pos_iou_thresh)
                         & (max_iou >= exclusive_iou_tresh)))
            # negativeサンプル数は pos_roi_per_batch - limit_pos(つまり残り) 以内に制限
            limit_neg = self.n_samples_per_batch - limit_pos
            limit_neg = K.minimum(limit_neg, K.shape(idx_neg)[0])
            idx_neg = K.switch(
                K.shape(idx_neg)[0] > 0,
                tf.random_shuffle(idx_neg)[:limit_neg], idx_neg)
            limit_neg = log.tfprint(limit_neg, "limit_neg: ")
            idx_neg = log.tfprint(idx_neg, "idx_neg: ")

            # 返却するサンプルを抽出
            # GTのoffsets, labelsは各roisに対応させる。つまり、同じ位置に格納する。
            idx_keep = K.concatenate((idx_pos, idx_neg))
            idx_keep = log.tfprint(idx_keep, "idx_keep: ")

            # 各RoIの最大IoUを示すIndexについても、上記返却するサンプルのみを残す。
            idx_gt_keep = K.gather(idx_max_gt, idx_keep)
            # IoUが閾値以上のPositiveとみなされるサンプルのみを残すためのIndex。
            idx_gt_keep_pos = K.gather(idx_max_gt, idx_pos)
            idx_gt_keep = log.tfprint(idx_gt_keep, "idx_gt_keep: ")

            sample_roi = K.gather(roi, idx_keep)
            sample_gt_offset = bbox.get_offset_K(
                sample_roi, K.gather(gt_bbox, idx_gt_keep))
            # negativeな要素には0を設定
            sample_gt_label = K.concatenate((
                K.cast(K.gather(gt_label, idx_gt_keep_pos), dtype='int32'),
                K.zeros(
                    [limit_neg],  # K.zerosは0階テンソルを受け付けないので配列化。。。
                    dtype='int32')))

            # 行数がn_samples_per_batch未満の場合は0パディング
            remain = tf.maximum(
                self.n_samples_per_batch - tf.shape(sample_roi)[0], 0)
            sample_roi = tf.pad(sample_roi, [(0, remain), (0, 0)],
                                name='subsample_sample_roi')
            sample_gt_offset = tf.pad(sample_gt_offset, [(0, remain), (0, 0)],
                                      name='subsample_sample_gt_offset')
            sample_gt_offset /= self.config.bbox_refinement_std
            sample_gt_label = tf.pad(sample_gt_label, [(0, remain)],
                                     name='subsample_sample_gt_label')

            sample_roi = log.tfprint(sample_roi, "sample_roi: ")
            sample_gt_offset = log.tfprint(sample_gt_offset,
                                           "sample_gt_offset: ")
            sample_gt_label = log.tfprint(sample_gt_label, "sample_gt_label: ")

            sample_rois.append(sample_roi)
            sample_gt_offsets.append(sample_gt_offset)
            sample_gt_labels.append(sample_gt_label)

        return [
            K.stack(sample_rois),
            K.stack(sample_gt_offsets),
            K.stack(sample_gt_labels)
        ]
Esempio n. 58
0
    def main(self):
        with tf.Graph().as_default() as graph, tf.device('/cpu:0'):

            num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
            global_step = slim.get_or_create_global_step()
            lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP,
                                num_gpu * cfgs.BATCH_SIZE)
            tf.summary.scalar('lr', lr)

            optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
            retinanet = build_whole_network_batch.DetectionNetworkRetinaNet(
                cfgs=self.cfgs, is_training=True)

            with tf.name_scope('get_batch'):
                if cfgs.IMAGE_PYRAMID:
                    shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
                    shortside_len = tf.random_shuffle(shortside_len_list)[0]

                else:
                    shortside_len = cfgs.IMG_SHORT_SIDE_LEN

                img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
                    self.reader.next_batch(dataset_name=cfgs.DATASET_NAME,
                                           batch_size=cfgs.BATCH_SIZE * num_gpu,
                                           shortside_len=shortside_len,
                                           is_training=True)

            # data processing
            inputs_list = []
            for i in range(num_gpu):
                start = i * cfgs.BATCH_SIZE
                end = (i + 1) * cfgs.BATCH_SIZE
                img = img_batch[start:end, :, :, :]
                pretrain_zoo = PretrainModelZoo()
                if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo:
                    img = img / tf.constant([cfgs.PIXEL_STD])

                gtboxes_and_label_r = tf.py_func(
                    backward_convert,
                    inp=[
                        tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9])
                    ],
                    Tout=tf.float32)
                gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r,
                                                 [cfgs.BATCH_SIZE, -1, 6])

                gtboxes_and_label_h = get_horizen_minAreaRectangle(
                    tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9]))
                gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h,
                                                 [cfgs.BATCH_SIZE, -1, 5])

                num_objects = num_objects_batch[start:end]
                num_objects = tf.cast(
                    tf.reshape(num_objects, [
                        cfgs.BATCH_SIZE,
                        -1,
                    ]), tf.float32)

                img_h = img_h_batch[start:end]
                img_w = img_w_batch[start:end]

                inputs_list.append([
                    img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects,
                    img_h, img_w
                ])

            tower_grads = []
            biases_regularizer = tf.no_regularizer
            weights_regularizer = tf.contrib.layers.l2_regularizer(
                cfgs.WEIGHT_DECAY)

            with tf.variable_scope(tf.get_variable_scope()):
                for i in range(num_gpu):
                    with tf.device('/gpu:%d' % i):
                        with tf.name_scope('tower_%d' % i):
                            with slim.arg_scope(
                                [slim.model_variable, slim.variable],
                                    device='/device:CPU:0'):
                                with slim.arg_scope(
                                    [
                                        slim.conv2d, slim.conv2d_in_plane,
                                        slim.conv2d_transpose,
                                        slim.separable_conv2d,
                                        slim.fully_connected
                                    ],
                                        weights_regularizer=weights_regularizer,
                                        biases_regularizer=biases_regularizer,
                                        biases_initializer=tf.
                                        constant_initializer(0.0)):

                                    gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(
                                        self.get_gtboxes_and_label,
                                        inp=[
                                            inputs_list[i][1],
                                            inputs_list[i][2],
                                            inputs_list[i][3]
                                        ],
                                        Tout=[tf.float32, tf.float32])
                                    gtboxes_and_label_h = tf.reshape(
                                        gtboxes_and_label_h,
                                        [cfgs.BATCH_SIZE, -1, 5])
                                    gtboxes_and_label_r = tf.reshape(
                                        gtboxes_and_label_r,
                                        [cfgs.BATCH_SIZE, -1, 6])

                                    img = inputs_list[i][0]
                                    img_shape = inputs_list[i][-2:]
                                    h_crop = tf.reduce_max(img_shape[0])
                                    w_crop = tf.reduce_max(img_shape[1])
                                    img = tf.image.crop_to_bounding_box(
                                        image=img,
                                        offset_height=0,
                                        offset_width=0,
                                        target_height=tf.cast(
                                            h_crop, tf.int32),
                                        target_width=tf.cast(w_crop, tf.int32))

                                    outputs = retinanet.build_whole_detection_network(
                                        input_img_batch=img,
                                        gtboxes_batch_h=gtboxes_and_label_h,
                                        gtboxes_batch_r=gtboxes_and_label_r,
                                        gpu_id=i)
                                    gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(
                                        img_batch=tf.expand_dims(
                                            img[0, :, :, :], axis=0),
                                        boxes=gtboxes_and_label_h[0, :, :-1],
                                        labels=gtboxes_and_label_h[0, :, -1],
                                        method=0)
                                    gtboxes_in_img_r = self.drawer.draw_boxes_with_categories(
                                        img_batch=tf.expand_dims(
                                            img[0, :, :, :], axis=0),
                                        boxes=gtboxes_and_label_r[0, :, :-1],
                                        labels=gtboxes_and_label_r[0, :, -1],
                                        method=1)
                                    tf.summary.image(
                                        'Compare/gtboxes_h_gpu:%d' % i,
                                        gtboxes_in_img_h)
                                    tf.summary.image(
                                        'Compare/gtboxes_r_gpu:%d' % i,
                                        gtboxes_in_img_r)

                                    if cfgs.ADD_BOX_IN_TENSORBOARD:
                                        detections_in_img = self.drawer.draw_boxes_with_categories_and_scores(
                                            img_batch=tf.expand_dims(
                                                img[0, :, :, :], axis=0),
                                            boxes=outputs[0],
                                            scores=outputs[1],
                                            labels=outputs[2],
                                            method=1)
                                        tf.summary.image(
                                            'Compare/final_detection_gpu:%d' %
                                            i, detections_in_img)

                                    loss_dict = outputs[-1]
                                    total_loss_dict, total_losses = self.loss_dict(
                                        loss_dict, num_gpu)

                                    if i == num_gpu - 1:
                                        regularization_losses = tf.get_collection(
                                            tf.GraphKeys.REGULARIZATION_LOSSES)
                                        # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
                                        total_losses = total_losses + tf.add_n(
                                            regularization_losses)

                            tf.get_variable_scope().reuse_variables()
                            grads = optimizer.compute_gradients(total_losses)
                            if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
                                grads = slim.learning.clip_gradient_norms(
                                    grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
                            tower_grads.append(grads)
            self.log_printer(retinanet, optimizer, global_step, tower_grads,
                             total_loss_dict, num_gpu * cfgs.BATCH_SIZE, graph)
Esempio n. 59
0
def detect_targets_graph(gt_boxes, gt_class_ids, proposals,
                         train_rois_per_image, roi_positive_ratio):
    """
    每个图像生成检测网络的分类和回归目标
    IoU>=0.5的为正样本;IoU<0.5的为负样本
    :param gt_boxes: GT 边框坐标 [MAX_GT_BOXs, (y1,x1,y2,x2,tag)] ,tag=0 为padding
    :param gt_class_ids: GT 类别 [MAX_GT_BOXs, 1+1] ;最后一位为tag, tag=0 为padding
    :param proposals: [N,(y1,x1,y2,x2,tag)] ,tag=0 为padding
    :param train_rois_per_image: 每张图像训练的proposal数量
    :param roi_positive_ratio: proposal正负样本比
    :return:
    """
    # 去除padding
    gt_boxes = tf_utils.remove_pad(gt_boxes)
    gt_class_ids = tf_utils.remove_pad(gt_class_ids)[:, 0]  # 从[N,1]变为[N]
    proposals = tf_utils.remove_pad(proposals)
    proposals_num = tf.shape(proposals)[0]
    # 计算iou
    iou = compute_iou(gt_boxes, proposals)  # [gt_num,rois_num]

    # iou >=0.5为正
    proposals_iou_max = tf.reduce_max(iou, axis=0)  # [rois_num]
    positive_indices = tf.where(
        tf.logical_and(tf.equal(iou, proposals_iou_max),
                       tf.greater_equal(iou, 0.5)))
    gt_pos_idx = positive_indices[:, 0]  # 第一维gt索引
    proposal_pos_idx = positive_indices[:, 1]  # 第二位rois索引
    match_gt_num = tf.shape(tf.unique(gt_pos_idx)[0])[0]  # shuffle 前匹配的gt num

    gt_boxes_pos = tf.gather(gt_boxes, gt_pos_idx)
    class_ids = tf.gather(gt_class_ids, gt_pos_idx)
    proposal_pos = tf.gather(proposals, proposal_pos_idx)
    # 根据正负样本比确定最终的正样本
    positive_num = tf.minimum(
        tf.shape(proposal_pos)[0],
        int(train_rois_per_image * roi_positive_ratio))
    gt_boxes_pos, class_ids, proposal_pos, gt_pos_idx = shuffle_sample(
        [gt_boxes_pos, class_ids, proposal_pos, gt_pos_idx],
        tf.shape(proposal_pos)[0], positive_num)
    match_gt_num_after_shuffle = tf.shape(
        tf.unique(gt_pos_idx)[0])[0]  # shuffle 后匹配的gt num

    # 计算回归目标
    deltas = regress_target(proposal_pos, gt_boxes_pos)

    # 负样本:与所有GT的iou<0.5且iou>0.1
    proposal_iou_max = tf.reduce_max(iou, axis=0)
    proposal_neg_idx = tf.cond(  # 需要考虑GT个数为0的情况;全部都是负样本
        tf.greater(tf.shape(gt_boxes)[0], 0),
        true_fn=lambda: tf.where(
            tf.logical_and(proposal_iou_max < 0.5, proposal_iou_max > 0.1))[:,
                                                                            0],
        false_fn=lambda: tf.cast(tf.range(proposals_num), dtype=tf.int64))
    # 确定负样本数量
    negative_num = tf.minimum(train_rois_per_image - positive_num,
                              tf.shape(proposal_neg_idx)[0])
    proposal_neg_idx = tf.random_shuffle(proposal_neg_idx)[:negative_num]
    # 收集负样本
    proposal_neg = tf.gather(proposals, proposal_neg_idx)
    class_ids_neg = tf.zeros(shape=[negative_num])  # 背景类,类别id为0
    deltas_neg = tf.zeros(shape=[negative_num, 4])

    # 合并正负样本
    train_rois = tf.concat([proposal_pos, proposal_neg], axis=0)
    deltas = tf.concat([deltas, deltas_neg], axis=0)
    class_ids = tf.concat([class_ids, class_ids_neg], axis=0)

    # 计算padding
    class_ids, train_rois = tf_utils.pad_list_to_fixed_size(
        [tf.expand_dims(class_ids, axis=1), train_rois],
        train_rois_per_image)  # class_ids分类扩一维
    # 为后续处理方便负样本tag设置为-1
    deltas = tf_utils.pad_to_fixed_size_with_negative(
        deltas, train_rois_per_image, negative_num=negative_num)
    # 其它统计指标
    gt_num = tf.shape(gt_class_ids)[0]  # GT数
    miss_gt_num = gt_num - match_gt_num
    miss_gt_num_shuffle = gt_num - match_gt_num_after_shuffle  # shuffle后未分配roi的GT
    gt_min_max_iou = tf.reduce_min(tf.reduce_max(iou, axis=1))  # gt 匹配最小最大值
    return [
        deltas, class_ids, train_rois,
        tf_utils.scalar_to_1d_tensor(miss_gt_num),
        tf_utils.scalar_to_1d_tensor(miss_gt_num_shuffle),
        tf_utils.scalar_to_1d_tensor(gt_min_max_iou),
        tf_utils.scalar_to_1d_tensor(positive_num),
        tf_utils.scalar_to_1d_tensor(negative_num),
        tf_utils.scalar_to_1d_tensor(proposals_num)
    ]
Esempio n. 60
0
 def f1():
     # Choose a random window-length range from the sequence.
     range_min = tf.random_shuffle(tf.range(seq_len - window))[0]
     range_max = range_min + window
     return tf.range(range_min, range_max)