def testZeros(self):

        self.assertAllEqual(
            connected_components(
                self.evaluate(tf.zeros((100, 20, 50), tf.bool))),
            np.zeros((100, 20, 50)),
        )
    def testOnes(self):

        self.assertAllEqual(
            self.evaluate(connected_components(tf.ones((100, 20, 50),
                                                       tf.bool))),
            np.tile(np.arange(100)[:, None, None] + 1, [1, 20, 50]),
        )
Esempio n. 3
0
def test_random_scipy():
    np.random.seed(42)
    images = np.random.randint(0, 2, size=(10, 100, 200)).astype(np.bool)
    expected = connected_components_reference_implementation(images)
    if expected is None:
        return

    np.testing.assert_equal(connected_components(images).numpy(), expected)
    def testRandom_scipy(self):
        np.random.seed(42)
        images = np.random.randint(0, 2, size=(10, 100, 200)).astype(np.bool)
        expected = connected_components_reference_implementation(images)
        if expected is None:
            return

        self.assertAllEqual(self.evaluate(connected_components(images)),
                            expected)
 def testDisconnected(self):
     arr = tf.cast(
         [[1, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 0, 1, 0],
          [1, 0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0],
          [0, 0, 1, 0, 0, 0, 0, 0, 0]], tf.bool)  # pylint: disable
     expected = ([[1, 0, 0, 2, 0, 0, 0, 0, 3], [0, 4, 0, 0, 0, 5, 0, 6, 0],
                  [7, 0, 8, 0, 0, 0, 9, 0, 0], [0, 0, 0, 0, 10, 0, 0, 0, 0],
                  [0, 0, 11, 0, 0, 0, 0, 0, 0]])  # pylint: disable
     self.assertAllEqual(self.evaluate(connected_components(arr)), expected)
    def testMultipleImages(self):
        images = [[[1, 1, 1, 1], [1, 0, 0, 1], [1, 0, 0, 1], [1, 1, 1, 1]],
                  [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]],
                  [[1, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0],
                   [0, 0, 1, 1]]]  # pylint: disable
        expected = [[[1, 1, 1, 1], [1, 0, 0, 1], [1, 0, 0, 1], [1, 1, 1, 1]],
                    [[2, 0, 0, 3], [0, 0, 0, 0], [0, 0, 0, 0], [4, 0, 0, 5]],
                    [[6, 6, 0, 7], [0, 6, 6, 0], [8, 0, 6, 0],
                     [0, 0, 6, 6]]]  # pylint: disable

        self.assertAllEqual(
            self.evaluate(connected_components(tf.cast(images, tf.bool))),
            expected)
Esempio n. 7
0
def test_multiple_images():
    images = tf.cast(
        [
            [[1, 1, 1, 1], [1, 0, 0, 1], [1, 0, 0, 1], [1, 1, 1, 1]],
            [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]],
            [[1, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 1]],
        ],
        tf.bool,
    )
    expected = [
        [[1, 1, 1, 1], [1, 0, 0, 1], [1, 0, 0, 1], [1, 1, 1, 1]],
        [[2, 0, 0, 3], [0, 0, 0, 0], [0, 0, 0, 0], [4, 0, 0, 5]],
        [[6, 6, 0, 7], [0, 6, 6, 0], [8, 0, 6, 0], [0, 0, 6, 6]],
    ]

    np.testing.assert_equal(connected_components(images).numpy(), expected)
Esempio n. 8
0
def test_snake_disconnected():
    for i in range(SNAKE.shape[0]):
        for j in range(SNAKE.shape[1]):

            # If we disconnect any part of the snake except for the endpoints,
            # there will be 2 components.
            if SNAKE[i, j] and (i, j) not in [(1, 1), (6, 3)]:
                disconnected_snake = SNAKE.copy()
                disconnected_snake[i, j] = 0
                components = connected_components(
                    tf.cast(disconnected_snake, tf.bool))
                assert np.max(components) == 2

                bins = np.bincount(components.numpy().ravel())
                # Nonzero number of pixels labeled 0, 1, or 2.
                assert bins[0] > 0
                assert bins[1] > 0
                assert bins[2] > 0
 def testDisconnected(self):
     arr = tf.cast(
         [
             [1, 0, 0, 1, 0, 0, 0, 0, 1],
             [0, 1, 0, 0, 0, 1, 0, 1, 0],
             [1, 0, 1, 0, 0, 0, 1, 0, 0],
             [0, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 0, 1, 0, 0, 0, 0, 0, 0],
         ],
         tf.bool,
     )
     expected = [
         [1, 0, 0, 2, 0, 0, 0, 0, 3],
         [0, 4, 0, 0, 0, 5, 0, 6, 0],
         [7, 0, 8, 0, 0, 0, 9, 0, 0],
         [0, 0, 0, 0, 10, 0, 0, 0, 0],
         [0, 0, 11, 0, 0, 0, 0, 0, 0],
     ]
     self.assertAllEqual(self.evaluate(connected_components(arr)), expected)
    def testSnake_disconnected(self):
        for i in range(SNAKE.shape[0]):
            for j in range(SNAKE.shape[1]):

                # If we disconnect any part of the snake except for the endpoints,
                # there will be 2 components.
                if SNAKE[i, j] and (i, j) not in [(1, 1), (6, 3)]:
                    disconnected_snake = SNAKE.copy()
                    disconnected_snake[i, j] = 0
                    components = self.evaluate(
                        connected_components(
                            tf.cast(disconnected_snake, tf.bool)))
                    self.assertEqual(components.max(), 2,
                                     "disconnect (%d, %d)" % (i, j))
                    bins = np.bincount(components.ravel())
                    # Nonzero number of pixels labeled 0, 1, or 2.
                    self.assertGreater(bins[0], 0)
                    self.assertGreater(bins[1], 0)
                    self.assertGreater(bins[2], 0)
Esempio n. 11
0
def test_disconnected():
    arr = tf.cast(
        [
            [1, 0, 0, 1, 0, 0, 0, 0, 1],
            [0, 1, 0, 0, 0, 1, 0, 1, 0],
            [1, 0, 1, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0, 0],
        ],
        tf.bool,
    )
    expected = [
        [1, 0, 0, 2, 0, 0, 0, 0, 3],
        [0, 4, 0, 0, 0, 5, 0, 6, 0],
        [7, 0, 8, 0, 0, 0, 9, 0, 0],
        [0, 0, 0, 0, 10, 0, 0, 0, 0],
        [0, 0, 11, 0, 0, 0, 0, 0, 0],
    ]
    np.testing.assert_equal(connected_components(arr).numpy(), expected)
    def testSnake(self):

        # Single component with id 1.
        self.assertAllEqual(
            self.evaluate(connected_components(tf.cast(SNAKE, tf.bool))),
            SNAKE)
    def testSimple(self):
        arr = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]

        # Single component with id 1.
        self.assertAllEqual(
            self.evaluate(connected_components(tf.cast(arr, tf.bool))), arr)
Esempio n. 14
0
def test_zeros():
    np.testing.assert_equal(
        connected_components(tf.zeros((100, 20, 50), tf.bool)),
        np.zeros((100, 20, 50)))
    def testOnes_small(self):

        self.assertAllEqual(
            self.evaluate(connected_components(tf.ones((3, 5), tf.bool))),
            np.ones((3, 5)),
        )
Esempio n. 16
0
def test_ones():
    np.testing.assert_equal(
        connected_components(tf.ones((100, 20, 50), tf.bool)),
        np.tile(np.arange(100)[:, None, None] + 1, [1, 20, 50]),
    )
Esempio n. 17
0
def test_ones_small():

    np.testing.assert_equal(
        connected_components(tf.ones((3, 5), tf.bool)).numpy(), np.ones(
            (3, 5)))
Esempio n. 18
0
def test_simple():
    arr = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]

    # Single component with id 1.
    np.testing.assert_equal(
        connected_components(tf.cast(arr, tf.bool)).numpy(), arr)
Esempio n. 19
0
def test_snake():
    # Single component with id 1.
    np.testing.assert_equal(
        connected_components(tf.cast(SNAKE, tf.bool)).numpy(), SNAKE)