def Train(self, input, target): X_train, X_test, Y_train, Y_test = train_test_split(input, target, train_size=0.75) Y_train = np.asarray(Y_train) Y_test = np.array(Y_test) X_train = np.reshape(X_train, [-1, X_train[0].shape[0], X_train[0].shape[1]]) X_test = np.reshape(X_test, [-1, X_train[0].shape[0], X_train[0].shape[1]]) model = Sequential() model.add(Conv1D(16, 3, padding='same', input_shape=input[0].shape)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization()) model.add(GRU(16, return_sequences=True)) # model.add(Activation("sigmoid")) # model.add(LSTM(lstm_out)) model.add(Flatten()) model.add(Dense(8, activity_regularizer=l2(0.001))) # model.add(GRU(lstm_out, return_sequences=True)) # model.add(LSTM(lstm_out)) # model.add(Dense(20, activity_regularizer=l2(0.001))) model.add(Activation("relu")) model.add(Dense(2)) model.compile(loss=mean_absolute_error, optimizer='nadam', metrics=[RootMeanSquaredError(), MAE]) print(model.summary()) batch_size = 12 epochs = 100 reduce_lr_acc = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=epochs / 10, verbose=1, min_delta=1e-4, mode='max') model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, Y_test), callbacks=[reduce_lr_acc]) model.save("PositionEstimation.h5", overwrite=True) # acc = model.evaluate(X_test, # Y_test, # batch_size=batch_size, # verbose=0) predicted = model.predict(X_test, batch_size=batch_size) # predicted = out.ravel() res = pd.DataFrame({"predicted_x": predicted[:, 0], "predicted_y": predicted[:, 1], "original_x": Y_test[:, 0], "original_y": Y_test[:, 1]}) res.to_excel("res.xlsx")
def free_attn_lstm(dataset_object: LSTM_data): X_train, X_test, Y_train, Y_test = dataset_object.get_memory() X_train, X_test = X_train[:, :, :-12], X_test[:, :, :-12] regressor = Sequential() # Adding the first LSTM layer and some Dropout regularisation regressor.add(LSTM(units=NEURONS, return_sequences=True, activation=ACTIVATION, recurrent_activation="sigmoid", input_shape=(X_train.shape[1], X_train.shape[2]), bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dropout(DROPOUT)) regressor.add(LSTM(units=NEURONS, activation=ACTIVATION, recurrent_activation="sigmoid", return_sequences=True, bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dropout(DROPOUT)) # Adding a second LSTM layer and some Dropout regularisation regressor.add(LSTM(units=NEURONS, activation=ACTIVATION, recurrent_activation="sigmoid", bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dropout(DROPOUT)) # Adding the output layer regressor.add(Dense(units=1, activation='relu', bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) ) ) optim = Adam() # Compiling the RNN regressor.compile(optimizer=optim, loss='mean_squared_error') # Fitting the RNN to the Training set history= regressor.fit(X_train, Y_train, epochs=EPOCHS, batch_size=BATCH_SIZE, validation_data=(X_test, Y_test), callbacks=[REDUCE_LR, EARLY_STOP] ) regressor.save("data/weights/free_attn_lstm_no_senti") plot_train_loss(history) evaluate(regressor,X_test,Y_test, dataset_object,name="free_attn_lstm", senti="no")
def test_seq_to_seq(self): #print (self.get_random_states()) train_x = [] # Data size: 10 x (image + 2 actions) x board/action size train_x = np.random.randint(0, 2, size=(10, 3, 9)) # train_x = [ # [ # [0.1, 1.0], # [0.1, 1.0], # [0.1, 1.0], # [0.1, 1.0], # [0.1, 1.0], # ]] # 1 being the batch size # 10 being the length #train_x = np.random.randint(low=0, high=2, size=(1, 10, 9)) train_y = [[0.11, 0.11, 0.11]] * 10 #train_y = [ 0.11 ] train_y = np.array(train_y) model = Sequential() #model.add(layers.Flatten(input_shape=(3, 9))), #model.add(layers.Embedding(input_shape=(10, 9), )) model.add( layers.LSTM(units=100, input_shape=(3, 9), return_sequences=True)) model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(50, activation='relu')) model.add(layers.Dense(1, activation=None)) model.compile(optimizer='adam', loss=tf.losses.MSE, metrics=['mae']) print(model.summary()) model.fit(x=train_x, y=train_y, epochs=100, verbose=0) loss = model.evaluate(train_x, train_y, verbose=2) self.assertLess(loss[0], 1e-04)
def dense_net(dataset_object:LSTM_data): X_train, X_test, Y_train, Y_test = dataset_object.get_memory() print(X_test.shape, X_train.shape) X_train = X_train.reshape(X_train.shape[0],X_train.shape[2]) X_test=X_test.reshape(X_test.shape[0], X_test.shape[2]) X_train, X_test = X_train[:, :-12], X_test[:, :-12] print(X_test.shape, X_train.shape) regressor = Sequential() regressor.add(Dense(units=EPOCHS, activation='relu', bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dense(units=EPOCHS, activation='relu', bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dense(units=EPOCHS, activation='relu', bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) regressor.add(Dropout(DROPOUT)) regressor.add(Dense(units=1, activation='relu', bias_regularizer=regularizers.l2(BIAIS_REG), activity_regularizer=regularizers.l2(L2) )) optim = Adam() # Compiling the RNN regressor.compile(optimizer=optim, loss='mean_squared_error') # Fitting the RNN to the Training set history= regressor.fit(X_train, Y_train, epochs=EPOCHS, batch_size=BATCH_SIZE, validation_data=(X_test, Y_test), callbacks=[EARLY_STOP, REDUCE_LR]) regressor.save("data/weights/dense_no_senti") plot_train_loss(history) evaluate(regressor, X_test,Y_test, dataset_object,name="dense", senti="yes")
Lm1 = Sequential() #q1. try without input? Lm1.add(Input(shape=(784, ))) Lm1.add(Dense(num_classes, activation='softmax')) #q2.try SparseCategoricalCrossentropy without one-hot loss_object = tf.keras.losses.categorical_crossentropy optimizer = tf.keras.optimizers.SGD(0.01) # train_loss = tf.keras.metrics.Mean(name='train_loss') #try SparseCategoricalAccuracy train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy') checkpoint_path = "./checkpoints/" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, verbose=1, period=1) #q3 metrics=xxx without []? Lm1.compile(optimizer=optimizer, loss=loss_object, metrics=[train_accuracy]) #q4 train_ds? Lm1.fit(train_ds, epochs=3, callbacks=[cp_callback]) loss, acc = Lm1.evaluate(train_ds) print("saved model, loss: {:5.2f}, acc: {:5.2f}".format(loss, acc))
class MyAutoEncoder(object): # archType - 1 => 300|256|300 : archType - 2 => 300|128|300 # archType - 3 => 300|64|300 : archType - 4 => 300|32|300 # archType - 5 => 300|16|300 : archType - 6 => 300|128|64|128|300 # archType - 7 => 300|256|128|128|256|300 : archType - 8 => 300|128|64|32|64|128|300 # archType - 9 => 300||256|128|64|128|256|300 : archType - 10 => 300|128|64|32|16|32|64|128|300 # archType - 11 => 300|256|128|64|32|64|128|256|300 : archType - 12 => 300|256|128|64|32|16|32|64|128|256|300 def __init__(self, logFilePath, inputDim=0, archType=0): self.logFilePath = logFilePath if archType == 0: return # We are loading a saved model # Create auto encoder+decoder self.autoEncoderModel = Sequential() self.autoEncoderModel.add( Dense(inputDim, input_shape=(inputDim, ), activation='relu')) # Input layer if archType == 1: self.autoEncoderModel.add(Dense(256, activation='relu')) elif archType == 2: self.autoEncoderModel.add(Dense(128, activation='relu')) elif archType == 3: self.autoEncoderModel.add(Dense(64, activation='relu')) elif archType == 4: self.autoEncoderModel.add(Dense(32, activation='relu')) elif archType == 5: self.autoEncoderModel.add(Dense(16, activation='relu')) elif archType == 6: self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) elif archType == 7: self.autoEncoderModel.add(Dense(256, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(256, activation='relu')) elif archType == 8: self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) elif archType == 9: self.autoEncoderModel.add(Dense(256, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(256, activation='relu')) elif archType == 10: self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(16, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) elif archType == 11: self.autoEncoderModel.add(Dense(256, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(256, activation='relu')) elif archType == 12: self.autoEncoderModel.add(Dense(256, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(16, activation='relu')) self.autoEncoderModel.add(Dense(32, activation='relu')) self.autoEncoderModel.add(Dense(64, activation='relu')) self.autoEncoderModel.add(Dense(128, activation='relu')) self.autoEncoderModel.add(Dense(256, activation='relu')) else: raise ValueError("Incorrect architecture type given.") self.autoEncoderModel.add(Dense(inputDim, activation='relu')) # Output layer self.autoEncoderModel.compile(optimizer='adam', loss=losses.MSE) self.autoEncoderModel.summary() # Create encoder inputSample = Input(shape=(inputDim, )) inputLayer = self.autoEncoderModel.layers[0] if 0 < archType < 6: layerTwo = self.autoEncoderModel.layers[1] self.encoderModel = Model(inputSample, layerTwo(inputLayer(inputSample))) elif archType < 8: layerTwo = self.autoEncoderModel.layers[1] layerThree = self.autoEncoderModel.layers[2] self.encoderModel = Model( inputSample, layerThree(layerTwo(inputLayer(inputSample)))) elif archType < 10: layerTwo = self.autoEncoderModel.layers[1] layerThree = self.autoEncoderModel.layers[2] layerFour = self.autoEncoderModel.layers[3] self.encoderModel = Model( inputSample, layerFour(layerThree(layerTwo(inputLayer(inputSample))))) elif archType < 12: layerTwo = self.autoEncoderModel.layers[1] layerThree = self.autoEncoderModel.layers[2] layerFour = self.autoEncoderModel.layers[3] layerFive = self.autoEncoderModel.layers[4] self.encoderModel = Model( inputSample, layerFive( layerFour(layerThree(layerTwo(inputLayer(inputSample)))))) elif archType == 12: layerTwo = self.autoEncoderModel.layers[1] layerThree = self.autoEncoderModel.layers[2] layerFour = self.autoEncoderModel.layers[3] layerFive = self.autoEncoderModel.layers[4] layerSix = self.autoEncoderModel.layers[5] self.encoderModel = Model( inputSample, layerSix( layerFive( layerFour(layerThree(layerTwo( inputLayer(inputSample))))))) self.encoderModel.summary() def train(self, trainX, batchSize, epochs, isDenoising=False): tic = time.perf_counter() inputLayer = trainX if isDenoising: # add some noise to the input layer inputLayer = trainX + np.random.normal(0, 1, trainX.shape) / 2 self.autoEncoderModel.fit(inputLayer, trainX, epochs=epochs, batch_size=batchSize, shuffle=True, validation_split=0.2) toc = time.perf_counter() with open(self.logFilePath, "a") as resultsWriter: resultsWriter.write( f"AutoEncoder training time: {toc - tic:0.4f} seconds \r") return toc - tic def encode(self, dataX, isTrainData): tic = time.perf_counter() encodedDataX = self.encoderModel.predict(dataX) toc = time.perf_counter() if isTrainData: with open(self.logFilePath, "a") as resultsWriter: resultsWriter.write( f"AutoEncoder training encoding time: {toc - tic:0.4f} seconds \r" ) else: with open(self.logFilePath, "a") as resultsWriter: resultsWriter.write( f"AutoEncoder testing encoding time: {toc - tic:0.4f} seconds \r\r" ) return encodedDataX, toc - tic