Esempio n. 1
0
    def test_vertex_normals_random(self):
        """Tests the computation of vertex normals for a regular octahedral."""
        tensor_vertex_size = np.random.randint(1, 3)
        tensor_out_shape = np.random.randint(1, 5, size=tensor_vertex_size)
        tensor_out_shape = tensor_out_shape.tolist()

        with self.subTest(name="triangular_faces"):
            vertex_on_axes = np.array(
                ((0., 0., 1), (1., 0., 0.), (0., 1., 0.), (0., 0., -1.),
                 (-1., 0., 0.), (0., -1., 0.)),
                dtype=np.float32)
            vertex_on_axes = vertex_on_axes.reshape([1] * tensor_vertex_size +
                                                    [6, 3])
            index_init = np.array(((0, 1, 2), (0, 2, 4), (0, 4, 5), (0, 5, 1),
                                   (3, 2, 1), (3, 4, 2), (3, 5, 4), (3, 1, 5)),
                                  dtype=np.int32)
            index_init = index_init.reshape([1] * tensor_vertex_size + [8, 3])
            index_init = np.tile(index_init, tensor_out_shape + [1, 1])
            vertex_scale = np.random.uniform(0.5, 5.,
                                             tensor_out_shape + [1] * 2)
            vertex_init = vertex_on_axes * vertex_scale
            expected = vertex_on_axes * (vertex_scale * 0. + 1.)

            vertex_tensor = tf.convert_to_tensor(value=vertex_init)
            index_tensor = tf.convert_to_tensor(value=index_init)

            self.assertAllClose(
                normals.vertex_normals(vertex_tensor, index_tensor), expected)

        with self.subTest(name="polygon_faces"):
            num_vertices = np.random.randint(4, 8)
            poly_vertices = []
            rad_step = np.pi * 2. / num_vertices
            for i in range(num_vertices):
                poly_vertices.append(
                    [np.cos(i * rad_step),
                     np.sin(i * rad_step), 0])
            vertex_init = np.array(poly_vertices, dtype=np.float32)
            vertex_init = vertex_init.reshape([1] * tensor_vertex_size +
                                              [-1, 3])
            vertex_init = vertex_init * vertex_scale
            index_init = np.arange(num_vertices, dtype=np.int32)
            index_init = index_init.reshape([1] * tensor_vertex_size + [1, -1])
            index_init = np.tile(index_init, tensor_out_shape + [1, 1])
            expected = np.array((0., 0., 1.), dtype=np.float32)
            expected = expected.reshape([1] * tensor_vertex_size + [1, 3])
            expected = np.tile(expected, tensor_out_shape + [num_vertices, 1])
            vertex_tensor = tf.convert_to_tensor(value=vertex_init)
            index_tensor = tf.convert_to_tensor(value=index_init)

            self.assertAllClose(
                normals.vertex_normals(vertex_tensor, index_tensor), expected)
Esempio n. 2
0
    def test_vertex_normals_jacobian_random(self):
        """Test the Jacobian of the vertex normals function."""
        tensor_vertex_size = np.random.randint(1, 3)
        tensor_out_shape = np.random.randint(1, 5, size=tensor_vertex_size)
        tensor_out_shape = tensor_out_shape.tolist()
        vertex_axis = np.array(((0., 0., 1), (1., 0., 0.), (0., 1., 0.),
                                (0., 0., -1.), (-1., 0., 0.), (0., -1., 0.)),
                               dtype=np.float32)
        vertex_axis = vertex_axis.reshape([1] * tensor_vertex_size + [6, 3])
        faces = np.array(((0, 1, 2), (0, 2, 4), (0, 4, 5), (0, 5, 1),
                          (3, 2, 1), (3, 4, 2), (3, 5, 4), (3, 1, 5)),
                         dtype=np.int32)
        faces = faces.reshape([1] * tensor_vertex_size + [8, 3])
        index_init = np.tile(faces, tensor_out_shape + [1, 1])
        vertex_scale = np.random.uniform(0.5, 5., tensor_out_shape + [1] * 2)
        vertex_init = vertex_axis * vertex_scale
        vertex_tensor = tf.convert_to_tensor(value=vertex_init)
        index_tensor = tf.convert_to_tensor(value=index_init)

        y = normals.vertex_normals(vertex_tensor, index_tensor)

        self.assert_jacobian_is_correct(vertex_tensor, vertex_init, y)
Esempio n. 3
0
 def vertex_normals(vertex_tensor):
   return normals.vertex_normals(vertex_tensor, index_tensor)