Esempio n. 1
0
  def test_rdp_composition(self):
    base_event = dp_event.GaussianDpEvent(3.14159)
    base_rdp = _get_test_rdp(base_event)

    rdp_with_count = _get_test_rdp(base_event, count=6)
    self.assertAlmostEqual(rdp_with_count, base_rdp * 6)

    rdp_with_self_compose = _get_test_rdp(
        dp_event.SelfComposedDpEvent(base_event, 6))
    self.assertAlmostEqual(rdp_with_self_compose, base_rdp * 6)

    rdp_with_self_compose_and_count = _get_test_rdp(
        dp_event.SelfComposedDpEvent(base_event, 2), count=3)
    self.assertAlmostEqual(rdp_with_self_compose_and_count, base_rdp * 6)

    rdp_with_compose = _get_test_rdp(dp_event.ComposedDpEvent([base_event] * 6))
    self.assertAlmostEqual(rdp_with_compose, base_rdp * 6)

    rdp_with_compose_and_self_compose = _get_test_rdp(
        dp_event.ComposedDpEvent([
            dp_event.SelfComposedDpEvent(base_event, 1),
            dp_event.SelfComposedDpEvent(base_event, 2),
            dp_event.SelfComposedDpEvent(base_event, 3)
        ]))
    self.assertAlmostEqual(rdp_with_compose_and_self_compose, base_rdp * 6)

    base_event_2 = dp_event.GaussianDpEvent(1.61803)
    base_rdp_2 = _get_test_rdp(base_event_2)
    rdp_with_heterogeneous_compose = _get_test_rdp(
        dp_event.ComposedDpEvent([base_event, base_event_2]))
    self.assertAlmostEqual(rdp_with_heterogeneous_compose,
                           base_rdp + base_rdp_2)
Esempio n. 2
0
 def test_compute_rdp_gaussian(self):
   alpha = 3.14159
   sigma = 2.71828
   event = dp_event.GaussianDpEvent(sigma)
   accountant = rdp_privacy_accountant.RdpAccountant(orders=[alpha])
   accountant.compose(event)
   self.assertAlmostEqual(accountant._rdp[0], alpha / (2 * sigma**2))
Esempio n. 3
0
  def test_effective_gaussian_noise_multiplier(self):
    np.random.seed(0xBAD5EED)
    sigmas = np.random.uniform(size=(4,))

    event = dp_event.ComposedDpEvent([
        dp_event.GaussianDpEvent(sigmas[0]),
        dp_event.SelfComposedDpEvent(dp_event.GaussianDpEvent(sigmas[1]), 3),
        dp_event.ComposedDpEvent([
            dp_event.GaussianDpEvent(sigmas[2]),
            dp_event.GaussianDpEvent(sigmas[3])
        ])
    ])

    sigma = rdp_privacy_accountant._effective_gaussian_noise_multiplier(event)
    multi_sigmas = list(sigmas) + [sigmas[1]] * 2
    expected = sum(s**-2 for s in multi_sigmas)**-0.5
    self.assertAlmostEqual(sigma, expected)
Esempio n. 4
0
  def test_compute_rdp_multi_gaussian(self):
    alpha = 3.14159
    sigma1, sigma2 = 2.71828, 6.28319

    rdp1 = alpha / (2 * sigma1**2)
    rdp2 = alpha / (2 * sigma2**2)
    rdp = rdp1 + rdp2

    accountant = rdp_privacy_accountant.RdpAccountant(orders=[alpha])
    accountant.compose(
        dp_event.PoissonSampledDpEvent(
            1.0,
            dp_event.ComposedDpEvent([
                dp_event.GaussianDpEvent(sigma1),
                dp_event.GaussianDpEvent(sigma2)
            ])))
    self.assertAlmostEqual(accountant._rdp[0], rdp)
Esempio n. 5
0
 def test_zero_fixed_batch_sample(self):
   accountant = rdp_privacy_accountant.RdpAccountant(
       [3.14159], privacy_accountant.NeighboringRelation.REPLACE_ONE)
   accountant.compose(
       dp_event.SampledWithoutReplacementDpEvent(
           1000, 0, dp_event.GaussianDpEvent(1.0)))
   self.assertEqual(accountant.get_epsilon(1e-10), 0)
   self.assertEqual(accountant.get_delta(1e-10), 0)
Esempio n. 6
0
 def test_no_tree_no_sampling(self, total_steps, noise_multiplier):
   orders = [1 + x / 10 for x in range(1, 100)] + list(range(12, 64))
   tree_rdp = _compose_trees(noise_multiplier, [1] * total_steps, orders)._rdp
   accountant = rdp_privacy_accountant.RdpAccountant(orders)
   event = dp_event.SelfComposedDpEvent(
       dp_event.GaussianDpEvent(noise_multiplier), total_steps)
   accountant.compose(event)
   base_rdp = accountant._rdp
   self.assertTrue(np.allclose(tree_rdp, base_rdp, rtol=1e-12))
Esempio n. 7
0
  def test_supports(self):
    aor_accountant = rdp_privacy_accountant.RdpAccountant(
        [2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE)
    ro_accountant = rdp_privacy_accountant.RdpAccountant(
        [2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE)

    event = dp_event.GaussianDpEvent(1.0)
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SelfComposedDpEvent(dp_event.GaussianDpEvent(1.0), 6)
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.ComposedDpEvent(
        [dp_event.GaussianDpEvent(1.0),
         dp_event.GaussianDpEvent(2.0)])
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.PoissonSampledDpEvent(0.1, dp_event.GaussianDpEvent(1.0))
    self.assertTrue(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))

    composed_gaussian = dp_event.ComposedDpEvent(
        [dp_event.GaussianDpEvent(1.0),
         dp_event.GaussianDpEvent(2.0)])
    event = dp_event.PoissonSampledDpEvent(0.1, composed_gaussian)
    self.assertTrue(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))

    event = dp_event.SampledWithoutReplacementDpEvent(
        1000, 10, dp_event.GaussianDpEvent(1.0))
    self.assertFalse(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SampledWithoutReplacementDpEvent(1000, 10,
                                                      composed_gaussian)
    self.assertFalse(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SampledWithReplacementDpEvent(
        1000, 10, dp_event.GaussianDpEvent(1.0))
    self.assertFalse(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))
Esempio n. 8
0
 def test_epsilon_delta_consistency(self):
   orders = range(2, 50)  # Large range of orders (helps test for overflows).
   for q in [0, 0.01, 0.1, 0.8, 1.]:
     for multiplier in [0.0, 0.1, 1., 10., 100.]:
       event = dp_event.PoissonSampledDpEvent(
           q, dp_event.GaussianDpEvent(multiplier))
       accountant = rdp_privacy_accountant.RdpAccountant(orders)
       accountant.compose(event)
       for delta in [.99, .9, .1, .01, 1e-3, 1e-5, 1e-9, 1e-12]:
         epsilon = accountant.get_epsilon(delta)
         delta2 = accountant.get_delta(epsilon)
         if np.isposinf(epsilon):
           self.assertEqual(delta2, 1.0)
         elif epsilon == 0:
           self.assertLessEqual(delta2, delta)
         else:
           self.assertAlmostEqual(delta, delta2)
Esempio n. 9
0
 def test_compute_rdp_poisson_sampled_gaussian(self):
   orders = [1.5, 2.5, 5, 50, 100, np.inf]
   noise_multiplier = 2.5
   sampling_probability = 0.01
   count = 50
   event = dp_event.SelfComposedDpEvent(
       dp_event.PoissonSampledDpEvent(
           sampling_probability, dp_event.GaussianDpEvent(noise_multiplier)),
       count)
   accountant = rdp_privacy_accountant.RdpAccountant(orders=orders)
   accountant.compose(event)
   self.assertTrue(
       np.allclose(
           accountant._rdp, [
               6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02,
               np.inf
           ],
           rtol=1e-4))
Esempio n. 10
0
  def get_noised_result(self, sample_state, global_state):
    """Implements `tensorflow_privacy.DPQuery.get_noised_result`."""
    if distutils.version.LooseVersion(
        tf.__version__) < distutils.version.LooseVersion('2.0.0'):

      def add_noise(v):
        return v + tf.random.normal(
            tf.shape(input=v), stddev=global_state.stddev, dtype=v.dtype)
    else:
      random_normal = tf.random_normal_initializer(stddev=global_state.stddev)

      def add_noise(v):
        return v + tf.cast(random_normal(tf.shape(input=v)), dtype=v.dtype)

    result = tf.nest.map_structure(add_noise, sample_state)
    noise_multiplier = global_state.stddev / global_state.l2_norm_clip
    event = dp_event.GaussianDpEvent(noise_multiplier)

    return result, global_state, event
Esempio n. 11
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from absl.testing import absltest
from tensorflow_privacy.privacy.analysis import dp_event
from tensorflow_privacy.privacy.analysis import dp_event_builder

_gaussian_event = dp_event.GaussianDpEvent(1.0)
_laplace_event = dp_event.LaplaceDpEvent(1.0)
_poisson_event = dp_event.PoissonSampledDpEvent(_gaussian_event, 0.1)
_self_composed_event = dp_event.SelfComposedDpEvent(_gaussian_event, 3)


class DpEventBuilderTest(absltest.TestCase):
    def test_no_op(self):
        builder = dp_event_builder.DpEventBuilder()
        self.assertEqual(dp_event.NoOpDpEvent(), builder.build())

    def test_single_gaussian(self):
        builder = dp_event_builder.DpEventBuilder()
        builder.compose(_gaussian_event)
        self.assertEqual(_gaussian_event, builder.build())
Esempio n. 12
0
 def test_epsilon_non_private_gaussian(self):
   accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
   accountant.compose(dp_event.GaussianDpEvent(0))
   self.assertEqual(accountant.get_epsilon(1e-1), np.inf)
Esempio n. 13
0
 def test_zero_poisson_sample(self):
   accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
   accountant.compose(
       dp_event.PoissonSampledDpEvent(0, dp_event.GaussianDpEvent(1.0)))
   self.assertEqual(accountant.get_epsilon(1e-10), 0)
   self.assertEqual(accountant.get_delta(1e-10), 0)