def _trace(self):
        # Get Tensor of all ones of same shape as self.batch_shape.
        if self.batch_shape.is_fully_defined():
            batch_of_ones = array_ops.ones(shape=self.batch_shape,
                                           dtype=self.dtype)
        else:
            batch_of_ones = array_ops.ones(shape=self.batch_shape_tensor(),
                                           dtype=self.dtype)

        if self._min_matrix_dim() is not None:
            return self._min_matrix_dim() * batch_of_ones
        else:
            return (_ops.cast(self._min_matrix_dim_tensor(), self.dtype) *
                    batch_of_ones)
Esempio n. 2
0
    def _diag_part(self):
        # Get ones in shape of diag, which is [B1,...,Bb, N]
        # Also get the size of the diag, "N".
        if _ops.TensorShape(self.shape).is_fully_defined():
            diag_shape = _ops.TensorShape(self.shape)[:-1]
            diag_size = self.domain_dimension.value
        else:
            diag_shape = self.shape_tensor()[:-1]
            diag_size = self.domain_dimension_tensor()
        ones_diag = array_ops.ones(diag_shape, dtype=self.dtype)

        # As proved in comments in self._trace, the value on the diag is constant,
        # repeated N times.  This value is the trace divided by N.

        # The handling of _ops.TensorShape(self.shape) = (0, 0) is tricky, and is the reason we choose
        # to compute trace and use that to compute diag_part, rather than computing
        # the value on the diagonal ("diag_value") directly.  Both result in a 0/0,
        # but in different places, and the current method gives the right result in
        # the end.

        # Here, if _ops.TensorShape(self.shape) = (0, 0), then self.trace() = 0., and then
        # diag_value = 0. / 0. = NaN.
        diag_value = self.trace() / _ops.cast(diag_size, self.dtype)

        # If _ops.TensorShape(self.shape) = (0, 0), then ones_diag = [] (empty tensor), and then
        # the following line is NaN * [] = [], as needed.
        return diag_value[..., array_ops.newaxis] * ones_diag
    def _ones_diag(self):
        """Returns the diagonal of this operator as all ones."""
        if _ops.TensorShape(self.shape).is_fully_defined():
            d_shape = self.batch_shape.concatenate([self._min_matrix_dim()])
        else:
            d_shape = array_ops.concat(
                [self.batch_shape_tensor(), [self._min_matrix_dim_tensor()]],
                axis=0)

        return array_ops.ones(shape=d_shape, dtype=self.dtype)
Esempio n. 4
0
    def _add(self, op1, op2, operator_name, hints):
        # Will build a LinearOperatorScaledIdentity.

        if _type(op1) == _SCALED_IDENTITY:
            multiplier_1 = op1.multiplier
        else:
            multiplier_1 = array_ops.ones(op1.batch_shape_tensor(),
                                          dtype=op1.dtype)

        if _type(op2) == _SCALED_IDENTITY:
            multiplier_2 = op2.multiplier
        else:
            multiplier_2 = array_ops.ones(op2.batch_shape_tensor(),
                                          dtype=op2.dtype)

        return linear_operator_identity.LinearOperatorScaledIdentity(
            num_rows=op1.range_dimension_tensor(),
            multiplier=multiplier_1 + multiplier_2,
            is_non_singular=hints.is_non_singular,
            is_self_adjoint=hints.is_self_adjoint,
            is_positive_definite=hints.is_positive_definite,
            name=operator_name)
 def _diag_part(self):
   diag_entry = self.col[..., 0:1]
   return diag_entry * array_ops.ones(
       [self.domain_dimension_tensor()], self.dtype)
Esempio n. 6
0
 def _determinant(self):
     # For householder transformations, the determinant is -1.
     return -array_ops.ones(shape=self.batch_shape_tensor(),
                            dtype=self.dtype)
Esempio n. 7
0
 def _trace(self):
     # We have (n - 1) +1 eigenvalues and a single -1 eigenvalue.
     return _ops.cast(self.domain_dimension_tensor() - 2,
                      self.dtype) * array_ops.ones(
                          shape=self.batch_shape_tensor(), dtype=self.dtype)
 def _determinant(self):
     return array_ops.ones(shape=self.batch_shape_tensor(),
                           dtype=self.dtype)