Esempio n. 1
0
    def _encoder(self, x, reuse=False):
        # Encoder models the probability  P(z/X)
        # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
        # Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC62*4
        with tf.variable_scope("encoder", reuse=reuse):
            self.conv1 = lrelu(
                conv2d(x, self.n[0], 3, 3, 2, 2, name='en_conv1'))
            self.conv2 = lrelu((conv2d(self.conv1,
                                       self.n[1],
                                       3,
                                       3,
                                       2,
                                       2,
                                       name='en_conv2')))
            self.reshaped_en = tf.reshape(self.conv2, [self.batch_size, -1])
            self.dense2_en = lrelu(
                linear(self.reshaped_en, self.n[2], scope='en_fc3'))
            # net_before_gauss = tf.print('shape of net is ', tf.shape(net))

            # with tf.control_dependencies([net_before_gauss]):
            gaussian_params = linear(self.dense2_en,
                                     2 * self.z_dim,
                                     scope='en_fc4')

            # The mean parameter is unconstrained
            mean = gaussian_params[:, :self.z_dim]
            # The standard deviation must be positive. Parametrize with a softplus and
            # add a small epsilon for numerical stability
            stddev = 1e-6 + tf.nn.softplus(gaussian_params[:, self.z_dim:])
        return mean, stddev
Esempio n. 2
0
    def decoder(self, z, reuse=False):
        # Models the probability P(X/z)
        # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
        # Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
        with tf.variable_scope("decoder", reuse=reuse):
            dense1 = lrelu((linear(z, self.n[2], scope='de_fc1')))
            dense2 = lrelu((linear(dense1, self.n[1] * 7 * 7)))
            reshaped = tf.reshape(dense2, [self.batch_size, 7, 7, self.n[1]])
            deconv1 = lrelu(
                deconv2d(reshaped, [self.batch_size, 14, 14, self.n[0]],
                         3,
                         3,
                         2,
                         2,
                         name='de_dc3'))

            out = tf.nn.sigmoid(
                deconv2d(deconv1, [self.batch_size, 28, 28, 1],
                         3,
                         3,
                         2,
                         2,
                         name='de_dc4'))
            # out = lrelu(deconv2d(deconv1, [self.batch_size, 28, 28, 1], 3, 3, 2, 2, name='de_dc4'))
            return out
Esempio n. 3
0
    def _build_model(self):
        # some parameters
        image_dims = [self.input_height, self.input_width, self.c_dim]
        bs = self.batch_size
        """ Graph Input """
        # images
        self.inputs = tf.placeholder(tf.float32, [bs] + image_dims,
                                     name='real_images')

        # random vectors with  multi-variate gaussian distribution
        # 0 mean and covariance matrix as Identity
        self.standard_normal = tf.placeholder(tf.float32, [bs, self.z_dim],
                                              name='z')

        # Whether the sample was manually annotated.
        self.is_manual_annotated = tf.placeholder(tf.float32, [bs],
                                                  name="is_manual_annotated")
        self.labels = tf.placeholder(tf.float32, [bs, self.label_dim],
                                     name='manual_label')
        """ Loss Function """
        # encoding
        self.mu, self.sigma = self._encoder(self.inputs, reuse=False)

        # sampling by re-parameterization technique
        self.z = self.mu + self.sigma * tf.random_normal(
            tf.shape(self.mu), 0, 1, dtype=tf.float32)

        # supervised loss for labelled samples
        self.y_pred = linear(self.z, 10)
        self.supervised_loss = tf.losses.softmax_cross_entropy(
            onehot_labels=self.labels,
            logits=self.y_pred,
            weights=self.is_manual_annotated)

        # decoding
        out = self.decoder(self.z, reuse=False)
        self.out = tf.clip_by_value(out, 1e-8, 1 - 1e-8)

        # loss
        marginal_likelihood = tf.reduce_sum(
            self.inputs * tf.log(self.out) +
            (1 - self.inputs) * tf.log(1 - self.out), [1, 2])
        # marginal_likelihood = -tf.losses.mean_squared_error(self.inputs, self.out)
        # marginal_likelihood = tf.reduce_sum(tf.losses.mean_squared_error(self.inputs, self.out), [1, 2])
        kl_divergence = 0.5 * tf.reduce_sum(
            tf.square(self.mu) + tf.square(self.sigma) -
            tf.log(1e-8 + tf.square(self.sigma)) - 1, [1])

        self.neg_loglikelihood = -tf.reduce_mean(marginal_likelihood)
        self.KL_divergence = tf.reduce_mean(kl_divergence)

        evidence_lower_bound = -self.neg_loglikelihood - self.beta * self.KL_divergence

        self.loss = -evidence_lower_bound + self.supervise_weight * self.supervised_loss
        """ Training """
        # optimizers
        t_vars = tf.trainable_variables()
        with tf.control_dependencies(tf.get_collection(
                tf.GraphKeys.UPDATE_OPS)):
            self.optim = tf.train.AdamOptimizer(self.learning_rate * 5, beta1=self.beta1) \
                .minimize(self.loss, var_list=t_vars)
        """" Testing """

        # for test
        self.fake_images = self.decoder(self.standard_normal, reuse=True)
        """ Summary """
        nll_sum = tf.summary.scalar("Negative Log Likelihood",
                                    self.neg_loglikelihood)
        kl_sum = tf.summary.scalar("K L Divergence", self.KL_divergence)
        supervised_loss = tf.summary.scalar("Supervised Loss",
                                            self.supervised_loss)

        loss_sum = tf.summary.scalar("Total Loss", self.loss)

        # final summary operations
        self.merged_summary_op = tf.summary.merge_all()