Esempio n. 1
0
    def __call__(self, inputs, state, scope=None):
        with tf.variable_scope(scope or type(self).__name__):
            unitary_hidden_state, secondary_cell_hidden_state = tf.split(
                1, 2, state)

            mat_in = tf.get_variable('mat_in',
                                     [self.input_size, self.state_size * 2])
            mat_out = tf.get_variable('mat_out',
                                      [self.state_size * 2, self.output_size])
            in_proj = tf.matmul(inputs, mat_in)
            in_proj_c = tf.complex(tf.split(1, 2, in_proj))
            out_state = modReLU(
                in_proj_c + ulinear(unitary_hidden_state, self.state_size),
                tf.get_variable(name='bias',
                                dtype=tf.float32,
                                shape=tf.shape(unitary_hidden_state),
                                initializer=tf.constant_initalizer(0.)),
                scope=scope)

        with tf.variable_scope('unitary_output'):
            '''computes data linear, unitary linear and summation -- TODO: should be complex output'''
            unitary_linear_output_real = linear.linear(
                [tf.real(out_state),
                 tf.imag(out_state), inputs], True, 0.0)

        with tf.variable_scope('scale_nonlinearity'):
            modulus = tf.complex_abs(unitary_linear_output_real)
            rescale = tf.maximum(modulus + hidden_bias, 0.) / (modulus + 1e-7)

        # transition to data shortcut connection

        # out_ = tf.matmul(tf.concat(1,[tf.real(out_state), tf.imag(out_state), ] ), mat_out) + out_bias

        # hidden state is complex but output is completely real
        return out_, out_state  # complex
Esempio n. 2
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        with tf.device("/gpu:" + str(self._gpu_for_layer)):
            """Long short-term memory cell (LSTM)."""
            with tf.variable_scope(scope
                                   or type(self).__name__):  # "BasicLSTMCell"
                # Parameters of gates are concatenated into one multiply for efficiency.
                h, c = tf.split(1, 2, state)

                concat = multiplicative_integration([inputs, h],
                                                    self._num_units * 4, 0.0)

                # i = input_gate, j = new_input, f = forget_gate, o = output_gate
                i, j, f, o = tf.split(1, 4, concat)

                if self.use_recurrent_dropout and self.is_training:
                    input_contribution = tf.nn.dropout(
                        tf.tanh(j), self.recurrent_dropout_factor)
                else:
                    input_contribution = tf.tanh(j)

                new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(
                    i) * input_contribution
                new_h = tf.tanh(new_c) * tf.sigmoid(o)

            return new_h, tf.concat(1, [new_h, new_c])  # purposely reversed
Esempio n. 3
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        with tf.variable_scope(scope
                               or type(self).__name__):  # "BasicLSTMCell"
            # Parameters of gates are concatenated into one multiply for efficiency.
            hidden_state_plus_c_list = tf.split(1, self.num_memory_arrays + 1,
                                                state)

            h = hidden_state_plus_c_list[0]
            c_list = hidden_state_plus_c_list[1:]
            '''very large matrix multiplication to speed up procedure -- will split variables out later'''

            if self.use_multiplicative_integration:
                concat = multiplicative_integration(
                    [inputs, h], self._num_units * 4 * self.num_memory_arrays,
                    0.0)
            else:
                concat = linear([inputs, h],
                                self._num_units * 4 * self.num_memory_arrays,
                                True)

            if self.use_layer_normalization:
                concat = layer_norm(concat,
                                    num_variables_in_tensor=4 *
                                    self.num_memory_arrays)

            # i = input_gate, j = new_input, f = forget_gate, o = output_gate -- comes in sets of fours
            all_vars_list = tf.split(1, 4 * self.num_memory_arrays, concat)
            '''memory array loop'''
            new_c_list, new_h_list = [], []
            for array_counter in xrange(self.num_memory_arrays):

                i = all_vars_list[0 + array_counter * 4]
                j = all_vars_list[1 + array_counter * 4]
                f = all_vars_list[2 + array_counter * 4]
                o = all_vars_list[3 + array_counter * 4]

                if self.use_recurrent_dropout and self.is_training:
                    input_contribution = tf.nn.dropout(
                        tf.tanh(j), self.recurrent_dropout_factor)
                else:
                    input_contribution = tf.tanh(j)

                new_c_list.append(c_list[array_counter] *
                                  tf.sigmoid(f + self._forget_bias) +
                                  tf.sigmoid(i) * input_contribution)

                if self.use_layer_normalization:
                    new_c = layer_norm(new_c_list[-1])
                else:
                    new_c = new_c_list[-1]

                new_h_list.append(tf.tanh(new_c) * tf.sigmoid(o))
            '''sum all new_h components -- could instead do a mean -- but investigate that later'''
            new_h = tf.add_n(new_h_list)

        return new_h, tf.concat(1, [new_h] + new_c_list)  # purposely reversed
Esempio n. 4
0
def layer_norm(input_tensor,
               num_variables_in_tensor=1,
               initial_bias_value=0.0,
               scope="layer_norm"):
    with tf.variable_scope(scope):
        '''for clarification of shapes:
        input_tensor = [batch_size, num_neurons]
        mean = [batch_size]
        variance = [batch_size]
        alpha = [num_neurons]
        bias = [num_neurons]
        output = [batch_size, num_neurons]
        '''
        input_tensor_shape_list = input_tensor.get_shape().as_list()

        num_neurons = input_tensor_shape_list[1] / num_variables_in_tensor

        alpha = tf.get_variable('layer_norm_alpha',
                                [num_neurons * num_variables_in_tensor],
                                initializer=tf.constant_initializer(1.0))

        bias = tf.get_variable(
            'layer_norm_bias', [num_neurons * num_variables_in_tensor],
            initializer=tf.constant_initializer(initial_bias_value))

        if num_variables_in_tensor == 1:
            input_tensor_list = [input_tensor]
            alpha_list = [alpha]
            bias_list = [bias]

        else:
            input_tensor_list = tf.split(1, num_variables_in_tensor,
                                         input_tensor)
            alpha_list = tf.split(0, num_variables_in_tensor, alpha)
            bias_list = tf.split(0, num_variables_in_tensor, bias)

        list_of_layer_normed_results = []
        for counter in xrange(num_variables_in_tensor):
            mean, variance = moments_for_layer_norm(
                input_tensor_list[counter],
                axes=[1],
                name="moments_loopnum_" + str(counter) +
                scope)  # average across layer

            output = (
                alpha_list[counter] *
                (input_tensor_list[counter] - mean)) / variance + bias[counter]

            list_of_layer_normed_results.append(output)

        if num_variables_in_tensor == 1:
            return list_of_layer_normed_results[0]
        else:
            return tf.concat(1, list_of_layer_normed_results)
Esempio n. 5
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        """Normal Gated recurrent unit (GRU) with nunits cells."""
        with tf.variable_scope(scope or type(self).__name__):  # "GRUCell"
            with tf.variable_scope("Gates"):  # Reset gate and update gate.
                # We start with bias of 1.0 to not reset and not udpate.
                r, u = tf.split(
                    1, 2,
                    tf.sigmoid(
                        multiplicative_integration([inputs, state],
                                                   self._num_units * 2, 1.0)))

            with tf.variable_scope(
                    "Candidate"
            ):  # you need a different one because you're doing a new linear
                # notice they have the activation/non-linear step right here!
                c = tf.tanh(
                    multiplicative_integration([inputs, state],
                                               self._num_units, 0.0))

                if self.use_recurrent_dropout and self.is_training:
                    input_contribution = tf.nn.dropout(
                        c, self.recurrent_dropout_factor)
                else:
                    input_contribution = c

            new_h = u * state + (1 - u) * input_contribution

        return new_h, new_h
Esempio n. 6
0
def multiplicative_integration(list_of_inputs,
                               output_size,
                               initial_bias_value=0.0,
                               weights_already_calculated=False,
                               use_highway_gate=False,
                               use_l2_loss=False,
                               scope=None,
                               timestep=0):
    '''expects len(2) for list of inputs and will perform integrative multiplication

    weights_already_calculated will treat the list of inputs as Wx and Uz and is useful for batch normed inputs
    '''
    with tf.variable_scope(scope or 'double_inputs_multiple_integration'):
        if len(list_of_inputs) != 2:
            raise ValueError('list of inputs must be 2, you have:',
                             len(list_of_inputs))

        if weights_already_calculated:  # if you already have weights you want to insert from batch norm
            Wx = list_of_inputs[0]
            Uz = list_of_inputs[1]

        else:
            with tf.variable_scope('Calculate_Wx_mulint'):
                Wx = linear.linear(list_of_inputs[0],
                                   output_size,
                                   False,
                                   use_l2_loss=use_l2_loss,
                                   timestep=timestep)
            with tf.variable_scope("Calculate_Uz_mulint"):
                Uz = linear.linear(list_of_inputs[1],
                                   output_size,
                                   False,
                                   use_l2_loss=use_l2_loss,
                                   timestep=timestep)

        with tf.variable_scope("multiplicative_integration"):
            alpha = tf.get_variable(
                'mulint_alpha', [output_size],
                initializer=tf.truncated_normal_initializer(mean=1.0,
                                                            stddev=0.1))

            beta1, beta2 = tf.split(
                0, 2,
                tf.get_variable('mulint_params_betas', [output_size * 2],
                                initializer=tf.truncated_normal_initializer(
                                    mean=0.5, stddev=0.1)))

            original_bias = tf.get_variable(
                'mulint_original_bias', [output_size],
                initializer=tf.truncated_normal_initializer(
                    mean=initial_bias_value, stddev=0.1))

        final_output = alpha * Wx * Uz + beta1 * Uz + beta2 * Wx + original_bias

        if use_highway_gate:
            final_output = highway_network.apply_highway_gate(
                final_output, list_of_inputs[0])
    return final_output
Esempio n. 7
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        """Long short-term memory cell (LSTM).
        The idea with iteration would be to run different batch norm mean and variance stats on timestep greater than 10
        """
        with tf.variable_scope(scope
                               or type(self).__name__):  # "BasicLSTMCell"
            # Parameters of gates are concatenated into one multiply for efficiency.
            h, c = tf.split(1, 2, state)
            '''note that bias is set to 0 because batch norm bias is added later'''
            with tf.variable_scope('inputs_weight_matrix'):
                inputs_concat = linear([inputs], 4 * self._num_units, False)

                inputs_concat = layer_norm(inputs_concat,
                                           num_variables_in_tensor=4,
                                           scope="inputs_concat_layer_norm")

            with tf.variable_scope('state_weight_matrix'):
                h_concat = linear([h], 4 * self._num_units, False)
                h_concat = layer_norm(h_concat,
                                      num_variables_in_tensor=4,
                                      scope="h_concat_layer_norm")

            i, j, f, o = tf.split(
                1, 4,
                multiplicative_integration([inputs_concat, h_concat],
                                           4 * self._num_units,
                                           0.0,
                                           weights_already_calculated=True))

            new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(
                i) * tf.tanh(j)
            '''apply layer norm to the hidden state transition'''
            with tf.variable_scope('layer_norm_hidden_state'):
                new_h = tf.tanh(layer_norm(new_c)) * tf.sigmoid(o)

        return new_h, tf.concat(1, [new_h, new_c])  # reversed this
Esempio n. 8
0
    def __call__(self, inputs, state, timestep=0, scope=None):
        """Normal Gated recurrent unit (GRU) with nunits cells."""
        with tf.variable_scope(scope or type(self).__name__):  # "GRUCell"

            with tf.variable_scope("Inputs"):
                inputs_concat = linear([inputs], self._num_units * 2, False,
                                       1.0)

                inputs_concat = layer_norm(inputs_concat,
                                           num_variables_in_tensor=2,
                                           initial_bias_value=1.0)

            with tf.variable_scope("Hidden_State"):
                hidden_state_concat = linear([state], self._num_units * 2,
                                             False)

                hidden_state_concat = layer_norm(hidden_state_concat,
                                                 num_variables_in_tensor=2)

                r, u = tf.split(
                    1, 2,
                    tf.sigmoid(
                        multiplicative_integration(
                            [inputs_concat, hidden_state_concat],
                            2 * self._num_units,
                            1.0,
                            weights_already_calculated=True)))

            with tf.variable_scope("Candidate"):
                with tf.variable_scope('input_portion'):
                    input_portion = layer_norm(
                        linear([inputs], self._num_units, False))
                with tf.variable_scope('reset_portion'):
                    reset_portion = r * layer_norm(
                        linear([state], self._num_units, False))

                c = tf.tanh(
                    multiplicative_integration(
                        [input_portion, reset_portion],
                        self._num_units,
                        0.0,
                        weights_already_calculated=True))

            new_h = u * state + (1 - u) * c

        return new_h, new_h
Esempio n. 9
0
    def __call__(self, inputs, state, scope=None):
        """Gated recurrent unit (GRU) with nunits cells."""
        with tf.variable_scope(scope or type(self).__name__):  # "GRUCell"
            with tf.variable_scope("Gates"):  # Reset gate and update gate.
                # We start with bias of 1.0 to not reset and not update.
                concated_r_u = layer_norm(linear([inputs, state], 2 * self._num_units, False, 1.0),
                                          num_variables_in_tensor=2, initial_bias_value=1.0)

                r, u = tf.split(1, 2, tf.sigmoid(concated_r_u))

            with tf.variable_scope("Candidate"):
                with tf.variable_scope("reset_portion"):
                    reset_portion = r * layer_norm(linear([state], self._num_units, False))
                with tf.variable_scope("inputs_portion"):
                    inputs_portion = layer_norm(linear([inputs], self._num_units, False))
                c = tf.tanh(reset_portion + inputs_portion)

            new_h = u * state + (1 - u) * c
        return new_h, new_h