Esempio n. 1
0
def adam(loss_or_grads, params, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
    """Adam updates

    Adam updates implemented as in [1]_.

    Parameters
    ----------
    loss_or_grads : symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params : list of shared variables
        The variables to generate update expressions for
    learning_rate : float
        Learning rate
    beta1 : float
        Exponential decay rate for the first moment estimates.
    beta2 : float
        Exponential decay rate for the second moment estimates.
    epsilon : float
        Constant for numerical stability.

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    The paper [1]_ includes an additional hyperparameter lambda. This is only
    needed to prove convergence of the algorithm and has no practical use
    (personal communication with the authors), it is therefore omitted here.

    References
    ----------
    .. [1] Kingma, Diederik, and Jimmy Ba (2014):
           Adam: A Method for Stochastic Optimization.
           arXiv preprint arXiv:1412.6980.
    """
    all_grads = get_or_compute_grads(loss_or_grads, params)
    t_prev = theano.shared(utils.floatX(0.0))
    updates = OrderedDict()

    t = t_prev + 1
    a_t = learning_rate * T.sqrt(1 - beta2 ** t) / (1 - beta1 ** t)

    for param, g_t in zip(params, all_grads):
        value = param.get_value(borrow=True)
        m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
        v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        m_t = beta1 * m_prev + (1 - beta1) * g_t
        v_t = beta2 * v_prev + (1 - beta2) * g_t ** 2
        step = a_t * m_t / (T.sqrt(v_t) + epsilon)

        updates[m_prev] = m_t
        updates[v_prev] = v_t
        updates[param] = param - step

    updates[t_prev] = t
    return updates
Esempio n. 2
0
def adagrad(loss_or_grads, params, learning_rate=1.0, epsilon=1e-6):
    """Adagrad updates

    Scale learning rates by dividing with the square root of accumulated
    squared gradients. See [1]_ for further description.

    Parameters
    ----------
    loss_or_grads : symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params : list of shared variables
        The variables to generate update expressions for
    learning_rate : float or symbolic scalar
        The learning rate controlling the size of update steps
    epsilon : float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    Using step size eta Adagrad calculates the learning rate for feature i at
    time step t as:

    .. math:: \\eta_{t,i} = \\frac{\\eta}
       {\\sqrt{\\sum^t_{t^\\prime} g^2_{t^\\prime,i}+\\epsilon}} g_{t,i}

    as such the learning rate is monotonically decreasing.

    Epsilon is not included in the typical formula, see [2]_.

    References
    ----------
    .. [1] Duchi, J., Hazan, E., & Singer, Y. (2011):
           Adaptive subgradient methods for online learning and stochastic
           optimization. JMLR, 12:2121-2159.

    .. [2] Chris Dyer:
           Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
    """

    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    for param, grad in zip(params, grads):
        value = theano.compat.get_value(param, borrow=True)
        accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=theano.compat.broadcastable(param))
        accu_new = accu + grad ** 2
        updates[accu] = accu_new
        updates[param] = param - (learning_rate * grad / T.sqrt(accu_new + epsilon))

    return updates
Esempio n. 3
0
def rmsprop(loss_or_grads, params, learning_rate=1.0, rho=0.9, epsilon=1e-6):
    """RMSProp updates

    Scale learning rates by dividing with the moving average of the root mean
    squared (RMS) gradients. See [1]_ for further description.

    Parameters
    ----------
    loss_or_grads : symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params : list of shared variables
        The variables to generate update expressions for
    learning_rate : float or symbolic scalar
        The learning rate controlling the size of update steps
    rho : float or symbolic scalar
        Gradient moving average decay factor
    epsilon : float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    `rho` should be between 0 and 1. A value of `rho` close to 1 will decay the
    moving average slowly and a value close to 0 will decay the moving average
    fast.

    Using the step size :math:`\\eta` and a decay factor :math:`\\rho` the
    learning rate :math:`\\eta_t` is calculated as:

    .. math::
       r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\
       \\eta_t &= \\frac{\\eta}{\\sqrt{r_t + \\epsilon}}

    References
    ----------
    .. [1] Tieleman, T. and Hinton, G. (2012):
           Neural Networks for Machine Learning, Lecture 6.5 - rmsprop.
           Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20)
    """
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)
        accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
        accu_new = rho * accu + (1 - rho) * grad ** 2
        updates[accu] = accu_new
        updates[param] = param - (learning_rate * grad / T.sqrt(accu_new + epsilon))

    return updates
Esempio n. 4
0
    def get_output_for(self, input, deterministic=False, **kwargs):
        input_mean = input.mean(self.axes)
        input_inv_std = T.inv(T.sqrt(input.var(self.axes) + self.epsilon))

        # Decide whether to use the stored averages or mini-batch statistics
        use_averages = kwargs.get('batch_norm_use_averages',
                                  deterministic)
        if use_averages:
            mean = self.mean
            inv_std = self.inv_std
        else:
            mean = input_mean
            inv_std = input_inv_std

        # Decide whether to update the stored averages
        update_averages = kwargs.get('batch_norm_update_averages',
                                     not deterministic)
        if update_averages:
            # Trick: To update the stored statistics, we create memory-aliased
            # clones of the stored statistics:
            running_mean = theano.clone(self.mean, share_inputs=False)
            running_inv_std = theano.clone(self.inv_std, share_inputs=False)
            # set a default update for them:
            running_mean.default_update = ((1 - self.alpha) * running_mean +
                                           self.alpha * input_mean)
            running_inv_std.default_update = ((1 - self.alpha) *
                                              running_inv_std +
                                              self.alpha * input_inv_std)
            # and make sure they end up in the graph without participating in
            # the computation (this way their default_update will be collected
            # and applied, but the computation will be optimized away):
            mean += 0 * running_mean
            inv_std += 0 * running_inv_std

        # prepare dimshuffle pattern inserting broadcastable axes as needed
        param_axes = iter(range(input.ndim - len(self.axes)))
        pattern = ['x' if input_axis in self.axes
                   else next(param_axes)
                   for input_axis in range(input.ndim)]

        # apply dimshuffle pattern to all parameters
        beta = 0 if self.beta is None else self.beta.dimshuffle(pattern)
        gamma = 1 if self.gamma is None else self.gamma.dimshuffle(pattern)
        mean = mean.dimshuffle(pattern)
        inv_std = inv_std.dimshuffle(pattern)

        # normalize
        normalized = (input - mean) * (gamma * inv_std) + beta
        return normalized
Esempio n. 5
0
def total_norm_constraint(tensor_vars, max_norm, epsilon=1e-7, return_norm=False):
    """Rescales a list of tensors based on their combined norm

    If the combined norm of the input tensors exceeds the threshold then all
    tensors are rescaled such that the combined norm is equal to the threshold.

    Scaling the norms of the gradients is often used when training recurrent
    neural networks [1]_.

    Parameters
    ----------
    tensor_vars : List of TensorVariables.
        Tensors to be rescaled.
    max_norm : float
        Threshold value for total norm.
    epsilon : scalar, optional
        Value used to prevent numerical instability when dividing by
        very small or zero norms.
    return_norm : bool
        If true the total norm is also returned.

    Returns
    -------
    tensor_vars_scaled : list of TensorVariables
        The scaled tensor variables.
    norm : Theano scalar
        The combined norms of the input variables prior to rescaling,
        only returned if ``return_norms=True``.

    Examples
    --------
    >>> from lasagne.layers import InputLayer, DenseLayer
    >>> import lasagne
    >>> from lasagne.updates import sgd, total_norm_constraint
    >>> x = T.matrix()
    >>> y = T.ivector()
    >>> l_in = InputLayer((5, 10))
    >>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=T.nnet.softmax)
    >>> output = lasagne.layers.get_output(l1, x)
    >>> cost = T.mean(T.nnet.categorical_crossentropy(output, y))
    >>> all_params = lasagne.layers.get_all_params(l1)
    >>> all_grads = T.grad(cost, all_params)
    >>> scaled_grads = total_norm_constraint(all_grads, 5)
    >>> updates = sgd(scaled_grads, all_params, learning_rate=0.1)

    Notes
    -----
    The total norm can be used to monitor training.

    References
    ----------
    .. [1] Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence
       learning with neural networks. In Advances in Neural Information
       Processing Systems (pp. 3104-3112).
    """
    norm = T.sqrt(sum(T.sum(tensor ** 2) for tensor in tensor_vars))
    dtype = np.dtype(theano.config.floatX).type
    target_norm = T.clip(norm, 0, dtype(max_norm))
    multiplier = target_norm / (dtype(epsilon) + norm)
    tensor_vars_scaled = [step * multiplier for step in tensor_vars]

    if return_norm:
        return tensor_vars_scaled, norm
    else:
        return tensor_vars_scaled
Esempio n. 6
0
def norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-7):
    """Max weight norm constraints and gradient clipping

    This takes a TensorVariable and rescales it so that incoming weight
    norms are below a specified constraint value. Vectors violating the
    constraint are rescaled so that they are within the allowed range.

    Parameters
    ----------
    tensor_var : TensorVariable
        Theano expression for update, gradient, or other quantity.
    max_norm : scalar
        This value sets the maximum allowed value of any norm in
        `tensor_var`.
    norm_axes : sequence (list or tuple)
        The axes over which to compute the norm.  This overrides the
        default norm axes defined for the number of dimensions
        in `tensor_var`. When this is not specified and `tensor_var` is a
        matrix (2D), this is set to `(0,)`. If `tensor_var` is a 3D, 4D or
        5D tensor, it is set to a tuple listing all axes but axis 0. The
        former default is useful for working with dense layers, the latter
        is useful for 1D, 2D and 3D convolutional layers.
        (Optional)
    epsilon : scalar, optional
        Value used to prevent numerical instability when dividing by
        very small or zero norms.

    Returns
    -------
    TensorVariable
        Input `tensor_var` with rescaling applied to weight vectors
        that violate the specified constraints.

    Examples
    --------
    >>> param = theano.shared(
    ...     np.random.randn(100, 200).astype(theano.config.floatX))
    >>> update = param + 100
    >>> update = norm_constraint(update, 10)
    >>> func = theano.function([], [], updates=[(param, update)])
    >>> # Apply constrained update
    >>> _ = func()
    >>> from lasagne.utils import compute_norms
    >>> norms = compute_norms(param.get_value())
    >>> np.isclose(np.max(norms), 10)
    True

    Notes
    -----
    When `norm_axes` is not specified, the axes over which the norm is
    computed depend on the dimensionality of the input variable. If it is
    2D, it is assumed to come from a dense layer, and the norm is computed
    over axis 0. If it is 3D, 4D or 5D, it is assumed to come from a
    convolutional layer and the norm is computed over all trailing axes
    beyond axis 0. For other uses, you should explicitly specify the axes
    over which to compute the norm using `norm_axes`.
    """
    ndim = tensor_var.ndim

    if norm_axes is not None:
        sum_over = tuple(norm_axes)
    elif ndim == 2:  # DenseLayer
        sum_over = (0,)
    elif ndim in [3, 4, 5]:  # Conv{1,2,3}DLayer
        sum_over = tuple(range(1, ndim))
    else:
        raise ValueError("Unsupported tensor dimensionality {}." "Must specify `norm_axes`".format(ndim))

    dtype = np.dtype(theano.config.floatX).type
    norms = T.sqrt(T.sum(T.sqr(tensor_var), axis=sum_over, keepdims=True))
    target_norms = T.clip(norms, 0, dtype(max_norm))
    constrained_output = tensor_var * (target_norms / (dtype(epsilon) + norms))

    return constrained_output
Esempio n. 7
0
def adadelta(loss_or_grads, params, learning_rate=1.0, rho=0.95, epsilon=1e-6):
    """ Adadelta updates

    Scale learning rates by a the ratio of accumulated gradients to accumulated
    step sizes, see [1]_ and notes for further description.

    Parameters
    ----------
    loss_or_grads : symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params : list of shared variables
        The variables to generate update expressions for
    learning_rate : float or symbolic scalar
        The learning rate controlling the size of update steps
    rho : float or symbolic scalar
        Squared gradient moving average decay factor
    epsilon : float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    rho should be between 0 and 1. A value of rho close to 1 will decay the
    moving average slowly and a value close to 0 will decay the moving average
    fast.

    rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to
    work for multiple datasets (MNIST, speech).

    In the paper, no learning rate is considered (so learning_rate=1.0).
    Probably best to keep it at this value.
    epsilon is important for the very first update (so the numerator does
    not become 0).

    Using the step size eta and a decay factor rho the learning rate is
    calculated as:

    .. math::
       r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\
       \\eta_t &= \\eta \\frac{\\sqrt{s_{t-1} + \\epsilon}}
                             {\sqrt{r_t + \epsilon}}\\\\
       s_t &= \\rho s_{t-1} + (1-\\rho)*(\\eta_t*g)^2

    References
    ----------
    .. [1] Zeiler, M. D. (2012):
           ADADELTA: An Adaptive Learning Rate Method.
           arXiv Preprint arXiv:1212.5701.
    """
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)
        # accu: accumulate gradient magnitudes
        accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
        # delta_accu: accumulate update magnitudes (recursively!)
        delta_accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        # update accu (as in rmsprop)
        accu_new = rho * accu + (1 - rho) * grad ** 2
        updates[accu] = accu_new

        # compute parameter update, using the 'old' delta_accu
        update = grad * T.sqrt(delta_accu + epsilon) / T.sqrt(accu_new + epsilon)
        updates[param] = param - learning_rate * update

        # update delta_accu (as accu, but accumulating updates)
        delta_accu_new = rho * delta_accu + (1 - rho) * update ** 2
        updates[delta_accu] = delta_accu_new

    return updates