def symmetric_parafac_power_iteration(tensor, rank, n_repeat=10, n_iteration=10, verbose=False): """Symmetric CP Decomposition via Robust Symmetric Tensor Power Iteration Parameters ---------- tensor : tl.tensor input tensor to decompose, must be symmetric of shape (size, )*order rank : int rank of the decomposition (number of rank-1 components) n_repeat : int, default is 10 number of initializations to be tried n_iterations : int, default is 10 number of power iterations verbose : bool level of verbosity Returns ------- (weights, factor) weights : 1-D tl.tensor of length `rank` contains the eigenvalue of each eigenvector factor : 2-D tl.tensor of shape (size, rank) each column corresponds to one eigenvector """ rank = validate_cp_rank(tl.shape(tensor), rank=rank) order = tl.ndim(tensor) size = tl.shape(tensor)[0] if not tl.shape(tensor) == (size, ) * order: raise ValueError( 'The input tensor does not have the same size along each mode.') factor = [] weigths = [] for _ in range(rank): eigenval, eigenvec, deflated = symmetric_power_iteration( tensor, n_repeat=n_repeat, n_iteration=n_iteration, verbose=verbose) factor.append(eigenvec) weigths.append(eigenval) tensor = deflated factor = tl.stack(factor, axis=1) weigths = tl.stack(weigths) return weigths, factor
def parafac_power_iteration(tensor, rank, n_repeat=10, n_iteration=10, verbose=0): """CP Decomposition via Robust Tensor Power Iteration Parameters ---------- tensor : tl.tensor input tensor to decompose rank : int rank of the decomposition (number of rank-1 components) n_repeat : int, default is 10 number of initializations to be tried n_iteration : int, default is 10 number of power iterations verbose : bool level of verbosity Returns ------- (weights, factors) weights : 1-D tl.tensor of length `rank` contains the eigenvalue of each eigenvector factors : list of 2-D tl.tensor of shape (size, rank) Each column of each factor corresponds to one eigenvector """ rank = validate_cp_rank(tl.shape(tensor), rank=rank) order = tl.ndim(tensor) factors = [] weigths = [] for _ in range(rank): eigenval, eigenvec, deflated = power_iteration(tensor, n_repeat=n_repeat, n_iteration=n_iteration, verbose=verbose) factors.append(eigenvec) weigths.append(eigenval) tensor = deflated factors = [tl.stack([f[i] for f in factors], axis=1) for i in range(order)] weigths = tl.stack(weigths) return weigths, factors
def parafac(tensor, rank, n_iter_max=100, init='svd', svd='numpy_svd', normalize_factors=False, tol=1e-8, orthogonalise=False, random_state=None, verbose=False, return_errors=False, non_negative=False, mask=None): """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS) Computes a rank-`rank` decomposition of `tensor` [1]_ such that, ``tensor = [|weights; factors[0], ..., factors[-1] |]``. Parameters ---------- tensor : ndarray rank : int Number of components. n_iter_max : int Maximum number of iteration init : {'svd', 'random'}, optional Type of factor matrix initialization. See `initialize_factors`. svd : str, default is 'numpy_svd' function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS normalize_factors : if True, aggregate the weights of each factor in a 1D-tensor of shape (rank, ), which will contain the norms of the factors tol : float, optional (Default: 1e-6) Relative reconstruction error tolerance. The algorithm is considered to have found the global minimum when the reconstruction error is less than `tol`. random_state : {None, int, np.random.RandomState} verbose : int, optional Level of verbosity return_errors : bool, optional Activate return of iteration errors non_negative : bool, optional Perform non_negative PARAFAC. See :func:`non_negative_parafac`. mask : ndarray array of booleans with the same shape as ``tensor`` should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True). Allows for missing values [2]_ Returns ------- KruskalTensor : (weight, factors) * weights : 1D array of shape (rank, ) all ones if normalize_factors is False (default), weights of the (normalized) factors otherwise * factors : List of factors of the CP decomposition element `i` is of shape (tensor.shape[i], rank) errors : list A list of reconstruction errors at each iteration of the algorithms. References ---------- .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications", SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009. .. [2] Tomasi, Giorgio, and Rasmus Bro. "PARAFAC and missing values." Chemometrics and Intelligent Laboratory Systems 75.2 (2005): 163-180. """ epsilon = 10e-12 if orthogonalise and not isinstance(orthogonalise, int): orthogonalise = n_iter_max factors = initialize_factors(tensor, rank, init=init, svd=svd, random_state=random_state, non_negative=non_negative) rec_errors = [] norm_tensor = tl.norm(tensor, 2) weights = tl.ones(rank, **tl.context(tensor)) for iteration in range(n_iter_max): if orthogonalise and iteration <= orthogonalise: factor = [tl.qr(factor)[0] for factor in factors] if verbose: print("Starting iteration", iteration) for mode in range(tl.ndim(tensor)): if verbose: print("Mode", mode, "of", tl.ndim(tensor)) if non_negative: accum = 1 # khatri_rao(factors).tl.dot(khatri_rao(factors)) # simplifies to multiplications sub_indices = [i for i in range(len(factors)) if i != mode] for i, e in enumerate(sub_indices): if i: accum *= tl.dot(tl.transpose(factors[e]), factors[e]) else: accum = tl.dot(tl.transpose(factors[e]), factors[e]) pseudo_inverse = tl.tensor(np.ones((rank, rank)), **tl.context(tensor)) for i, factor in enumerate(factors): if i != mode: pseudo_inverse = pseudo_inverse * tl.dot( tl.conj(tl.transpose(factor)), factor) if mask is not None: tensor = tensor * mask + tl.kruskal_to_tensor(factors, mask=1 - mask) mttkrp = unfolding_dot_khatri_rao(tensor, (weights, factors), mode) if non_negative: numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None) denominator = tl.dot(factors[mode], accum) denominator = tl.clip(denominator, a_min=epsilon, a_max=None) factor = factors[mode] * numerator / denominator else: factor = tl.transpose( tl.solve(tl.conj(tl.transpose(pseudo_inverse)), tl.transpose(mttkrp))) if normalize_factors: factor_norm = tl.norm(factor, axis=0) weights *= factor_norm positive_factor_norms = tl.where( factor_norm == 0, tl.ones(tl.shape(factor_norm), **tl.context(factors[0])), factor_norm) factor = factor / positive_factor_norms factors[mode] = factor if tol: # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*<tensor, rec> # This is ||kruskal_to_tensor(factors)||^2 factors_norm = tl.sum( tl.prod( tl.stack([tl.dot(tl.transpose(f), f) for f in factors], 0), 0)) # mttkrp and factor for the last mode. This is equivalent to the # inner product <tensor, factorization> iprod = tl.sum(mttkrp * factor) rec_error = tl.sqrt( tl.abs(norm_tensor**2 + factors_norm - 2 * iprod)) / norm_tensor rec_errors.append(rec_error) if iteration >= 1: if verbose: print('reconstruction error={}, variation={}.'.format( rec_errors[-1], rec_errors[-2] - rec_errors[-1])) if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol: if verbose: print('converged in {} iterations.'.format(iteration)) break else: if verbose: print('reconstruction error={}'.format(rec_errors[-1])) kruskal_tensor = KruskalTensor((weights, factors)) if return_errors: return kruskal_tensor, rec_errors else: return kruskal_tensor
def parafac(tensor, rank, n_iter_max=100, init='svd', svd='numpy_svd', tol=1e-8, orthogonalise=False, random_state=None, verbose=False, return_errors=False, non_negative=False): """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS) Computes a rank-`rank` decomposition of `tensor` [1]_ such that, ``tensor = [| factors[0], ..., factors[-1] |]``. Parameters ---------- tensor : ndarray rank : int Number of components. n_iter_max : int Maximum number of iteration init : {'svd', 'random'}, optional Type of factor matrix initialization. See `initialize_factors`. svd : str, default is 'numpy_svd' function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS tol : float, optional (Default: 1e-6) Relative reconstruction error tolerance. The algorithm is considered to have found the global minimum when the reconstruction error is less than `tol`. random_state : {None, int, np.random.RandomState} verbose : int, optional Level of verbosity return_errors : bool, optional Activate return of iteration errors non_negative : bool, optional Perform non_negative PARAFAC. See :func:`non_negative_parafac`. Returns ------- factors : ndarray list List of factors of the CP decomposition element `i` is of shape (tensor.shape[i], rank) errors : list A list of reconstruction errors at each iteration of the algorithms. References ---------- .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications", SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009. """ epsilon = 10e-12 if orthogonalise and not isinstance(orthogonalise, int): orthogonalise = n_iter_max factors = initialize_factors(tensor, rank, init=init, svd=svd, random_state=random_state, non_negative=non_negative) rec_errors = [] norm_tensor = tl.norm(tensor, 2) for iteration in range(n_iter_max): if orthogonalise and iteration <= orthogonalise: factor = [tl.qr(factor)[0] for factor in factors] if verbose: print("Starting iteration", iteration) for mode in range(tl.ndim(tensor)): if verbose: print("Mode", mode, "of", tl.ndim(tensor)) if non_negative: accum = 1 # khatri_rao(factors).tl.dot(khatri_rao(factors)) # simplifies to multiplications sub_indices = [i for i in range(len(factors)) if i != mode] for i, e in enumerate(sub_indices): if i: accum *= tl.dot(tl.transpose(factors[e]), factors[e]) else: accum = tl.dot(tl.transpose(factors[e]), factors[e]) pseudo_inverse = tl.tensor(np.ones((rank, rank)), **tl.context(tensor)) for i, factor in enumerate(factors): if i != mode: pseudo_inverse = pseudo_inverse * tl.dot( tl.conj(tl.transpose(factor)), factor) #factor = tl.dot(unfold(tensor, mode), khatri_rao(factors, skip_matrix=mode).conj()) mttkrp = tl.tenalg.unfolding_dot_khatri_rao(tensor, factors, mode) if non_negative: numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None) denominator = tl.dot(factors[mode], accum) denominator = tl.clip(denominator, a_min=epsilon, a_max=None) factor = factors[mode] * numerator / denominator else: factor = tl.transpose( tl.solve(tl.conj(tl.transpose(pseudo_inverse)), tl.transpose(mttkrp))) factors[mode] = factor if tol: # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*<tensor, rec> # This is ||kruskal_to_tensor(factors)||^2 factors_norm = tl.sum( tl.prod( tl.stack([tl.dot(tl.transpose(f), f) for f in factors], 0), 0)) # mttkrp and factor for the last mode. This is equivalent to the # inner product <tensor, factorization> iprod = tl.sum(mttkrp * factor) rec_error = tl.sqrt( tl.abs(norm_tensor**2 + factors_norm - 2 * iprod)) / norm_tensor rec_errors.append(rec_error) if iteration >= 1: if verbose: print('reconstruction error={}, variation={}.'.format( rec_errors[-1], rec_errors[-2] - rec_errors[-1])) if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol: if verbose: print('converged in {} iterations.'.format(iteration)) break else: if verbose: print('reconstruction error={}'.format(rec_errors[-1])) if return_errors: return factors, rec_errors else: return factors