Esempio n. 1
0
def symmetric_parafac_power_iteration(tensor,
                                      rank,
                                      n_repeat=10,
                                      n_iteration=10,
                                      verbose=False):
    """Symmetric CP Decomposition via Robust Symmetric Tensor Power Iteration

    Parameters
    ----------
    tensor : tl.tensor
        input tensor to decompose, must be symmetric of shape (size, )*order
    rank : int
        rank of the decomposition (number of rank-1 components)
    n_repeat : int, default is 10
        number of initializations to be tried
    n_iterations : int, default is 10
        number of power iterations
    verbose : bool
        level of verbosity

    Returns
    -------
    (weights, factor)

    weights : 1-D tl.tensor of length `rank`
        contains the eigenvalue of each eigenvector
    factor : 2-D tl.tensor of shape (size, rank)
        each column corresponds to one eigenvector
    """
    rank = validate_cp_rank(tl.shape(tensor), rank=rank)

    order = tl.ndim(tensor)
    size = tl.shape(tensor)[0]

    if not tl.shape(tensor) == (size, ) * order:
        raise ValueError(
            'The input tensor does not have the same size along each mode.')

    factor = []
    weigths = []

    for _ in range(rank):
        eigenval, eigenvec, deflated = symmetric_power_iteration(
            tensor,
            n_repeat=n_repeat,
            n_iteration=n_iteration,
            verbose=verbose)
        factor.append(eigenvec)
        weigths.append(eigenval)
        tensor = deflated

    factor = tl.stack(factor, axis=1)
    weigths = tl.stack(weigths)

    return weigths, factor
Esempio n. 2
0
def parafac_power_iteration(tensor,
                            rank,
                            n_repeat=10,
                            n_iteration=10,
                            verbose=0):
    """CP Decomposition via Robust Tensor Power Iteration

    Parameters
    ----------
    tensor : tl.tensor
        input tensor to decompose
    rank : int
        rank of the decomposition (number of rank-1 components)
    n_repeat : int, default is 10
        number of initializations to be tried
    n_iteration : int, default is 10
        number of power iterations
    verbose : bool
        level of verbosity

    Returns
    -------
    (weights, factors)

    weights : 1-D tl.tensor of length `rank`
        contains the eigenvalue of each eigenvector
    factors : list of 2-D tl.tensor of shape (size, rank)
        Each column of each factor corresponds to one eigenvector
    """
    rank = validate_cp_rank(tl.shape(tensor), rank=rank)

    order = tl.ndim(tensor)
    factors = []
    weigths = []

    for _ in range(rank):
        eigenval, eigenvec, deflated = power_iteration(tensor,
                                                       n_repeat=n_repeat,
                                                       n_iteration=n_iteration,
                                                       verbose=verbose)
        factors.append(eigenvec)
        weigths.append(eigenval)
        tensor = deflated

    factors = [tl.stack([f[i] for f in factors], axis=1) for i in range(order)]
    weigths = tl.stack(weigths)

    return weigths, factors
Esempio n. 3
0
def parafac(tensor,
            rank,
            n_iter_max=100,
            init='svd',
            svd='numpy_svd',
            normalize_factors=False,
            tol=1e-8,
            orthogonalise=False,
            random_state=None,
            verbose=False,
            return_errors=False,
            non_negative=False,
            mask=None):
    """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS)
    Computes a rank-`rank` decomposition of `tensor` [1]_ such that,

        ``tensor = [|weights; factors[0], ..., factors[-1] |]``.

    Parameters
    ----------
    tensor : ndarray
    rank  : int
        Number of components.
    n_iter_max : int
        Maximum number of iteration
    init : {'svd', 'random'}, optional
        Type of factor matrix initialization. See `initialize_factors`.
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    normalize_factors : if True, aggregate the weights of each factor in a 1D-tensor
        of shape (rank, ), which will contain the norms of the factors
    tol : float, optional
        (Default: 1e-6) Relative reconstruction error tolerance. The
        algorithm is considered to have found the global minimum when the
        reconstruction error is less than `tol`.
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        Level of verbosity
    return_errors : bool, optional
        Activate return of iteration errors
    non_negative : bool, optional
        Perform non_negative PARAFAC. See :func:`non_negative_parafac`.
    mask : ndarray
        array of booleans with the same shape as ``tensor`` should be 0 where
        the values are missing and 1 everywhere else. Note:  if tensor is
        sparse, then mask should also be sparse with a fill value of 1 (or
        True). Allows for missing values [2]_


    Returns
    -------
    KruskalTensor : (weight, factors)
        * weights : 1D array of shape (rank, )
            all ones if normalize_factors is False (default), 
            weights of the (normalized) factors otherwise
        * factors : List of factors of the CP decomposition element `i` is of shape
            (tensor.shape[i], rank)

    errors : list
        A list of reconstruction errors at each iteration of the algorithms.

    References
    ----------
    .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
       
    .. [2] Tomasi, Giorgio, and Rasmus Bro. "PARAFAC and missing values." 
            Chemometrics and Intelligent Laboratory Systems 75.2 (2005): 163-180.


    """
    epsilon = 10e-12

    if orthogonalise and not isinstance(orthogonalise, int):
        orthogonalise = n_iter_max

    factors = initialize_factors(tensor,
                                 rank,
                                 init=init,
                                 svd=svd,
                                 random_state=random_state,
                                 non_negative=non_negative)
    rec_errors = []
    norm_tensor = tl.norm(tensor, 2)
    weights = tl.ones(rank, **tl.context(tensor))

    for iteration in range(n_iter_max):
        if orthogonalise and iteration <= orthogonalise:
            factor = [tl.qr(factor)[0] for factor in factors]

        if verbose:
            print("Starting iteration", iteration)
        for mode in range(tl.ndim(tensor)):
            if verbose:
                print("Mode", mode, "of", tl.ndim(tensor))
            if non_negative:
                accum = 1
                # khatri_rao(factors).tl.dot(khatri_rao(factors))
                # simplifies to multiplications
                sub_indices = [i for i in range(len(factors)) if i != mode]
                for i, e in enumerate(sub_indices):
                    if i:
                        accum *= tl.dot(tl.transpose(factors[e]), factors[e])
                    else:
                        accum = tl.dot(tl.transpose(factors[e]), factors[e])

            pseudo_inverse = tl.tensor(np.ones((rank, rank)),
                                       **tl.context(tensor))
            for i, factor in enumerate(factors):
                if i != mode:
                    pseudo_inverse = pseudo_inverse * tl.dot(
                        tl.conj(tl.transpose(factor)), factor)

            if mask is not None:
                tensor = tensor * mask + tl.kruskal_to_tensor(factors,
                                                              mask=1 - mask)

            mttkrp = unfolding_dot_khatri_rao(tensor, (weights, factors), mode)

            if non_negative:
                numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None)
                denominator = tl.dot(factors[mode], accum)
                denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
                factor = factors[mode] * numerator / denominator
            else:
                factor = tl.transpose(
                    tl.solve(tl.conj(tl.transpose(pseudo_inverse)),
                             tl.transpose(mttkrp)))

            if normalize_factors:
                factor_norm = tl.norm(factor, axis=0)
                weights *= factor_norm
                positive_factor_norms = tl.where(
                    factor_norm == 0,
                    tl.ones(tl.shape(factor_norm), **tl.context(factors[0])),
                    factor_norm)
                factor = factor / positive_factor_norms

            factors[mode] = factor

        if tol:
            # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*<tensor, rec>
            # This is ||kruskal_to_tensor(factors)||^2
            factors_norm = tl.sum(
                tl.prod(
                    tl.stack([tl.dot(tl.transpose(f), f) for f in factors], 0),
                    0))
            # mttkrp and factor for the last mode. This is equivalent to the
            # inner product <tensor, factorization>
            iprod = tl.sum(mttkrp * factor)
            rec_error = tl.sqrt(
                tl.abs(norm_tensor**2 + factors_norm -
                       2 * iprod)) / norm_tensor
            rec_errors.append(rec_error)

            if iteration >= 1:
                if verbose:
                    print('reconstruction error={}, variation={}.'.format(
                        rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

                if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                    if verbose:
                        print('converged in {} iterations.'.format(iteration))
                    break
            else:
                if verbose:
                    print('reconstruction error={}'.format(rec_errors[-1]))

    kruskal_tensor = KruskalTensor((weights, factors))

    if return_errors:
        return kruskal_tensor, rec_errors
    else:
        return kruskal_tensor
def parafac(tensor,
            rank,
            n_iter_max=100,
            init='svd',
            svd='numpy_svd',
            tol=1e-8,
            orthogonalise=False,
            random_state=None,
            verbose=False,
            return_errors=False,
            non_negative=False):
    """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS)

    Computes a rank-`rank` decomposition of `tensor` [1]_ such that,

        ``tensor = [| factors[0], ..., factors[-1] |]``.

    Parameters
    ----------
    tensor : ndarray
    rank  : int
        Number of components.
    n_iter_max : int
        Maximum number of iteration
    init : {'svd', 'random'}, optional
        Type of factor matrix initialization. See `initialize_factors`.
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    tol : float, optional
        (Default: 1e-6) Relative reconstruction error tolerance. The
        algorithm is considered to have found the global minimum when the
        reconstruction error is less than `tol`.
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        Level of verbosity
    return_errors : bool, optional
        Activate return of iteration errors
    non_negative : bool, optional
        Perform non_negative PARAFAC. See :func:`non_negative_parafac`.

    Returns
    -------
    factors : ndarray list
        List of factors of the CP decomposition element `i` is of shape
        (tensor.shape[i], rank)
    errors : list
        A list of reconstruction errors at each iteration of the algorithms.

    References
    ----------
    .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """
    epsilon = 10e-12

    if orthogonalise and not isinstance(orthogonalise, int):
        orthogonalise = n_iter_max

    factors = initialize_factors(tensor,
                                 rank,
                                 init=init,
                                 svd=svd,
                                 random_state=random_state,
                                 non_negative=non_negative)
    rec_errors = []
    norm_tensor = tl.norm(tensor, 2)

    for iteration in range(n_iter_max):
        if orthogonalise and iteration <= orthogonalise:
            factor = [tl.qr(factor)[0] for factor in factors]

        if verbose:
            print("Starting iteration", iteration)
        for mode in range(tl.ndim(tensor)):
            if verbose:
                print("Mode", mode, "of", tl.ndim(tensor))
            if non_negative:
                accum = 1
                # khatri_rao(factors).tl.dot(khatri_rao(factors))
                # simplifies to multiplications
                sub_indices = [i for i in range(len(factors)) if i != mode]
                for i, e in enumerate(sub_indices):
                    if i:
                        accum *= tl.dot(tl.transpose(factors[e]), factors[e])
                    else:
                        accum = tl.dot(tl.transpose(factors[e]), factors[e])

            pseudo_inverse = tl.tensor(np.ones((rank, rank)),
                                       **tl.context(tensor))
            for i, factor in enumerate(factors):
                if i != mode:
                    pseudo_inverse = pseudo_inverse * tl.dot(
                        tl.conj(tl.transpose(factor)), factor)

            #factor = tl.dot(unfold(tensor, mode), khatri_rao(factors, skip_matrix=mode).conj())
            mttkrp = tl.tenalg.unfolding_dot_khatri_rao(tensor, factors, mode)

            if non_negative:
                numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None)
                denominator = tl.dot(factors[mode], accum)
                denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
                factor = factors[mode] * numerator / denominator
            else:
                factor = tl.transpose(
                    tl.solve(tl.conj(tl.transpose(pseudo_inverse)),
                             tl.transpose(mttkrp)))

            factors[mode] = factor

        if tol:
            # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*<tensor, rec>
            # This is ||kruskal_to_tensor(factors)||^2
            factors_norm = tl.sum(
                tl.prod(
                    tl.stack([tl.dot(tl.transpose(f), f) for f in factors], 0),
                    0))
            # mttkrp and factor for the last mode. This is equivalent to the
            # inner product <tensor, factorization>
            iprod = tl.sum(mttkrp * factor)
            rec_error = tl.sqrt(
                tl.abs(norm_tensor**2 + factors_norm -
                       2 * iprod)) / norm_tensor
            rec_errors.append(rec_error)

            if iteration >= 1:
                if verbose:
                    print('reconstruction error={}, variation={}.'.format(
                        rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

                if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                    if verbose:
                        print('converged in {} iterations.'.format(iteration))
                    break
            else:
                if verbose:
                    print('reconstruction error={}'.format(rec_errors[-1]))

    if return_errors:
        return factors, rec_errors
    else:
        return factors