Esempio n. 1
0
def create_alarm_tmap(tm_name: str, alarm_name: str) -> Optional[TensorMap]:
    tm = None
    if tm_name == f"{alarm_name}_init_date":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.EVENT,
            tensor_from_file=make_alarm_array_tensor_from_file(),
            path_prefix=f"bedmaster/*/alarms/{alarm_name}/start_date",
        )
    elif tm_name == f"{alarm_name}_duration":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_alarm_array_tensor_from_file(),
            path_prefix=f"bedmaster/*/alarms/{alarm_name}/duration",
        )
    elif tm_name == f"{alarm_name}_level":
        tm = TensorMap(
            name=tm_name,
            shape=(None,),  # type: ignore
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_alarm_attribute_tensor_from_file("level"),
            path_prefix=f"bedmaster/*/alarms/{alarm_name}",
        )

    return tm
def missing_imputation(
    tm: TensorMap,
    hd5: h5py.File,
    visit: str,
    indices: List[int],
    period: str,
    tensor: np.ndarray,
    imputation_type: str = None,
    **kwargs,
):
    if imputation_type == "sample_and_hold":
        if len(tensor) == 0 or np.isnan(tensor).all():
            if period == "pre":
                values = tm.tensor_from_file(tm, hd5, visits=visit,
                                             **kwargs)[0][:indices[-1]]
                indice = -1
            else:
                values = tm.tensor_from_file(tm, hd5, visits=visit,
                                             **kwargs)[0][indices[0]:]
                indice = 0
            imputation = values[~np.isnan(values)]
            if imputation.size == 0:
                imputation = np.array([np.nan])
            tensor = np.array([imputation[indice]])
    elif imputation_type:
        name = tm.name.replace(f"_{imputation_type}", "")
        imputation = ICU_TMAPS_METADATA[name][imputation_type]
        tensor = np.nan_to_num(tensor, nan=imputation)
        if len(tensor) == 0:
            tensor = np.array([imputation])
    return tensor
Esempio n. 3
0
def create_event_department_tmap(tm_name: str, signal_name: str,
                                 data_type: str):
    tm = None
    name = signal_name.replace("|_", "")
    if tm_name == f"{name}_departments":
        tm = TensorMap(
            name=tm_name,
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_event_department_tensor_from_file(),
            path_prefix=f"edw/*/{data_type}/{signal_name}/start_date",
            channel_map={
                "mgh blake 8 card sicu": 0,
                "mgh ellison 8 cardsurg": 1,
                "mgh ellison 9 med\\ccu": 2,
                "mgh ellison 10 stp dwn": 3,
                "mgh ellison11 card\\int": 4,
                "other": 5,
            },
        )
    elif tm_name == f"{name}_departments_with_bm":
        tm = TensorMap(
            name=tm_name,
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_event_department_tensor_from_file(True),
            path_prefix=f"edw/*/{data_type}/{signal_name}/start_date",
            channel_map={
                "mgh blake 8 card sicu": 0,
                "mgh ellison 8 cardsurg": 1,
                "mgh ellison 9 med\\ccu": 2,
                "mgh ellison 10 stp dwn": 3,
                "mgh ellison11 card\\int": 4,
                "other": 5,
            },
        )
    return tm
Esempio n. 4
0
def create_ecg_feature_tmap(tm_name: str):
    tm = None
    match = None

    if not match:
        pattern = re.compile(r"(.*)_(i|ii|iii|v)$")
        match = pattern.findall(tm_name)
        if match:
            peak_name, lead = match[0]
            tm = TensorMap(
                name=tm_name,
                shape=(None, None),
                interpretation=Interpretation.EVENT,
                tensor_from_file=make_ecg_peak_tensor_from_file(lead),
                path_prefix=f"bedmaster/*/ecg_features/{lead}/ecg_{peak_name}",
            )
    if not match:
        pattern = re.compile(r"(.*)_(i|ii|iii|v)_(timeseries|value|time)$")
        match = pattern.findall(tm_name)
        if match:
            feature_name, lead, tm_type = match[0]
            if (feature_name.startswith("r") or feature_name.startswith("q")
                    or feature_name.startswith("pr")
                    or feature_name.startswith("s")):
                ref_peak = "r_peak"
            elif feature_name.startswith("p"):
                ref_peak = "p_peak"
            elif feature_name.startswith("t"):
                ref_peak = "t_peak"
            if tm_type == "timeseries":
                tm = TensorMap(
                    name=tm_name,
                    shape=(None, None),
                    interpretation=Interpretation.TIMESERIES,
                    tensor_from_file=make_ecg_feature_tensor_from_file(
                        f"{lead}_{ref_peak}", ),
                    path_prefix=
                    f"bedmaster/*/ecg_features/{lead}/{feature_name}",
                )
            elif tm_type == "value":
                tm = TensorMap(
                    name=tm_name,
                    shape=(None, None),
                    interpretation=Interpretation.CONTINUOUS,
                    tensor_from_file=make_ecg_feature_tensor_from_file(),
                    path_prefix=
                    f"bedmaster/*/ecg_features/{lead}/{feature_name}",
                )
            elif tm_type == "time":
                tm = TensorMap(
                    name=tm_name,
                    shape=(None, None),
                    interpretation=Interpretation.EVENT,
                    tensor_from_file=make_ecg_peak_tensor_from_file(lead),
                    path_prefix=
                    f"bedmaster/*/ecg_features/{lead}/ecg_{ref_peak}",
                )
    return tm
Esempio n. 5
0
def create_around_explore_tmap(tmap_name: str) -> Optional[TensorMap]:
    match = None
    if not match:
        pattern = re.compile(
            r"^(.*)_(\d+)_hrs_(pre|post)_(.*)_(\d+)_hrs_window_explore$", )
        match = pattern.findall(tmap_name)
        if match:
            make_tensor_from_file = make_around_event_explore_tensor_from_file(
                tmap_name.replace("_explore", ""), )
            channel_map = {
                "min": 0,
                "max": 1,
                "mean": 2,
                "std": 3,
                "first": 4,
                "last": 5,
                "count": 6,
            }
            path_prefix = create_around_tmap(tmap_name.replace(
                "_explore", ""), ).path_prefix
            return TensorMap(
                name=tmap_name,
                tensor_from_file=make_tensor_from_file,
                channel_map=channel_map,
                path_prefix=path_prefix,
                interpretation=Interpretation.CONTINUOUS,
            )
    return None
Esempio n. 6
0
def admin_age_tensor_from_file(
    tm: TensorMap, data: PatientData, **kwargs
) -> np.ndarray:

    if "visits" in kwargs:
        visits = kwargs["visits"]
        if isinstance(visits, str):
            visits = [visits]
    else:
        visits = tm.time_series_filter(data)

    shape = (len(visits),) + tm.shape
    tensor = np.zeros(shape)

    for i, visit in enumerate(visits):
        try:
            path = f"{tm.path_prefix}/{visit}"
            admit_date = get_unix_timestamps(data[path].attrs["admin_date"])
            birth_date = get_unix_timestamps(data[path].attrs["birth_date"])
            age = admit_date - birth_date
            tensor[i] = age / 60 / 60 / 24 / 365
        except (ValueError, KeyError) as e:
            logging.debug(f"Could not get age from {data.id}/{visit}")
            logging.debug(e)

    return tensor
Esempio n. 7
0
def tensor_from_file_aortic_stenosis_category(
    tm: TensorMap,
    data: PatientData,
) -> np.ndarray:
    """Categorizes aortic stenosis as none, mild, moderate, or severe
    from aortic valve mean gradient"""
    echo_dates = tm.time_series_filter(data)
    av_mean_gradient_key = continuous_tmap_names_and_keys["av_mean_gradient"]
    av_mean_gradients = data[ECHO_PREFIX].loc[echo_dates.index,
                                              av_mean_gradient_key]

    # Initialize tensor array of zeros where each row is the channel map
    num_categories = len(tm.channel_map)
    tensor = np.zeros((len(av_mean_gradients), num_categories))

    # Iterate through the peak velocities and mean gradients from all echos
    for idx, av_mean_gradient in enumerate(av_mean_gradients):
        if av_mean_gradient < 20:
            category = "mild"
        elif 20 <= av_mean_gradient < 40:
            category = "moderate"
        elif av_mean_gradient >= 40:
            category = "severe"
        else:
            continue
        tensor[idx, tm.channel_map[category]] = 1
    return tensor
Esempio n. 8
0
 def tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray:
     ici_dates = tm.time_series_filter(data)
     values = data[ICI_PREFIX].loc[ici_dates.index, key].to_numpy()
     tensor = np.zeros((len(values), len(tm.channel_map)))
     for i, value in enumerate(values):
         tensor[i, tm.channel_map[value]] = 1
     return tensor
Esempio n. 9
0
def create_event_tmap(tm_name: str, event_name: str, event_type: str):
    tm = None
    name = event_name.replace("|_", "")
    if tm_name == f"{name}_start_date":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.EVENT,
            tensor_from_file=make_event_tensor_from_file(),
            path_prefix=f"edw/*/{event_type}/{event_name}/start_date",
        )
    elif tm_name == f"{name}_end_date":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.EVENT,
            tensor_from_file=make_event_tensor_from_file(),
            path_prefix=f"edw/*/{event_type}/{event_name}/end_date",
        )
    elif tm_name == f"{name}_double":
        tm = TensorMap(
            name=tm_name,
            shape=(2,),
            interpretation=Interpretation.CATEGORICAL,
            tensor_from_file=make_event_outcome_tensor_from_file(
                visit_tm=get_visit_tmap(f"{name}_first_visit"),
                double=True,
            ),
            channel_map={f"no_{name}": 0, name: 1},
            path_prefix=f"edw/*/{event_type}/{event_name}/start_date",
            time_series_limit=2,
        )
    elif tm_name == f"{name}_single":
        tm = TensorMap(
            name=tm_name,
            shape=(1,),
            interpretation=Interpretation.CATEGORICAL,
            tensor_from_file=make_event_outcome_tensor_from_file(
                visit_tm=get_visit_tmap(f"{name}_first_visit"),
                double=False,
            ),
            channel_map={f"no_{name}": 0, name: 1},
            path_prefix=f"edw/*/{event_type}/{event_name}/start_date",
            time_series_limit=2,
        )
    return tm
Esempio n. 10
0
def create_med_tmap(tm_name: str, med_name: str):
    tm = None

    if tm_name == f"{med_name}_timeseries":
        tm = TensorMap(
            name=tm_name,
            shape=(None, 2, None),  # type: ignore
            interpretation=Interpretation.TIMESERIES,
            tensor_from_file=make_med_array_tensor_from_file(),
            path_prefix=f"edw/*/med/{med_name}",
        )
    elif tm_name == f"{med_name}_dose":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_med_array_tensor_from_file(),
            path_prefix=f"edw/*/med/{med_name}/dose",
        )
    elif tm_name == f"{med_name}_time":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.EVENT,
            tensor_from_file=make_med_array_tensor_from_file(),
            path_prefix=f"edw/*/med/{med_name}/start_date",
        )
    elif tm_name == f"{med_name}_units":
        tm = TensorMap(
            name=tm_name,
            shape=(None,),  # type: ignore
            interpretation=Interpretation.LANGUAGE,
            tensor_from_file=make_med_attribute_tensor_from_file("units"),
            path_prefix=f"edw/*/med/{med_name}",
        )
    elif tm_name == f"{med_name}_route":
        tm = TensorMap(
            name=tm_name,
            shape=(None,),  # type: ignore
            interpretation=Interpretation.LANGUAGE,
            tensor_from_file=make_med_attribute_tensor_from_file("route"),
            path_prefix=f"edw/*/med/{med_name}",
        )

    return tm
Esempio n. 11
0
 def tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray:
     surgery_dates = tm.time_series_filter(data)
     tensor = data[STS_PREFIX].loc[surgery_dates.index, key].to_numpy()
     if tm.channel_map is None:
         raise ValueError(f"{tm.name} channel map is None")
     tensor = np.array([one_hot(tm.channel_map, x) for x in tensor])
     if not is_dynamic_shape(tm):
         tensor = tensor[0]
     return tensor
Esempio n. 12
0
 def tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray:
     surgery_dates = tm.time_series_filter(data)
     tensor = data[STS_PREFIX].loc[surgery_dates.index, key].to_numpy()
     tensor = np.array(
         [binarize(key, x, negative_value, positive_value)
          for x in tensor], )
     if not is_dynamic_shape(tm):
         tensor = tensor[0]
     return tensor
Esempio n. 13
0
def create_list_signals_tmap(sig_name: str, sig_type: str, root: str):
    tm = TensorMap(
        name=sig_name,
        shape=(None, None),
        interpretation=Interpretation.LANGUAGE,
        tensor_from_file=make_list_signal_tensor_from_file(sig_type),
        path_prefix=f"{root}/*/{sig_type}",
    )
    return tm
Esempio n. 14
0
def tff_any(tm: TensorMap, data: PatientData) -> np.ndarray:
    surgery_dates = tm.time_series_filter(data)
    tensor = data[STS_PREFIX].loc[surgery_dates.index,
                                  sts_outcome_keys].to_numpy()
    tensor = tensor.any(axis=1).astype(int)
    tensor = np.array([binarize("any", x) for x in tensor])
    if not is_dynamic_shape(tm):
        tensor = tensor[0]
    return tensor
Esempio n. 15
0
def sex_double_tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray:
    visit = tm.time_series_filter(data)[0]
    shape = (2,) + tm.shape
    tensor = np.zeros(shape)
    path = f"{tm.path_prefix}/{visit}"
    value = data[path].attrs["sex"]
    tensor[:, tm.channel_map[value.lower()]] = np.array([1, 1])

    return tensor
Esempio n. 16
0
def create_timeseries_tmap(key: str) -> TensorMap:
    tmap = TensorMap(
        name=key,
        shape=(None,),
        interpretation=Interpretation.TIMESERIES,
        tensor_from_file=make_static_tensor_from_file(key),
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
    )
    return tmap
Esempio n. 17
0
def create_language_tmap(key: str) -> TensorMap:
    tmap = TensorMap(
        name=key,
        shape=(1,),
        interpretation=Interpretation.LANGUAGE,
        tensor_from_file=make_static_tensor_from_file(key),
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
    )
    return tmap
Esempio n. 18
0
def get_sliding_windows(
    hd5,
    window: int,
    step: int,
    event_tm_1: TensorMap,
    event_tm_2: TensorMap,
    visit_tm: TensorMap,
    buffer_adm_time: int = 24,
    **kwargs,
):
    """
    Create a sliding window from the time associated to <event_tm_1> to <event_tm_2>
    with step size <step> and window length <window>.
    """

    if not hasattr(get_sliding_windows, "windows_cache"):
        get_sliding_windows.windows_cache = {}
    if hd5.id in get_sliding_windows.windows_cache:
        return get_sliding_windows.windows_cache[hd5.id]
    visit = visit_tm.tensor_from_file(visit_tm, hd5, **kwargs)[0]
    event_time_1 = event_tm_1.tensor_from_file(event_tm_1,
                                               hd5,
                                               visits=visit,
                                               unix_dates=True,
                                               **kwargs)
    event_time_1 = event_time_1[0][0]
    event_time_2 = event_tm_2.tensor_from_file(event_tm_2,
                                               hd5,
                                               visits=visit,
                                               **kwargs)
    event_time_2 = event_time_2[0][0]
    windows = np.arange(
        event_time_1 + (buffer_adm_time + window) * 60 * 60,
        event_time_2,
        step * 60 * 60,
    )
    get_sliding_windows.windows_cache[hd5.id] = windows
    if windows.size == 0:
        raise ValueError(
            "It is not possible to compute a sliding window with the given parameters.",
        )
    return windows
Esempio n. 19
0
def create_arrest_tmap(tm_name: str):
    arrest_list = ["code_start", "rapid_response_start"]
    tm = None

    if tm_name == "arrest_start_date":
        tm = TensorMap(
            name=tm_name,
            shape=(None, None),  # type: ignore
            interpretation=Interpretation.EVENT,
            tensor_from_file=make_general_event_tensor_from_subevents(arrest_list),
            path_prefix="edw/*/events/{}/start_date",
        )
    if tm_name == "arrest_double":
        tm = TensorMap(
            name=tm_name,
            shape=(2,),
            interpretation=Interpretation.CATEGORICAL,
            tensor_from_file=make_general_event_outcome_tensor_from_subevents(
                visit_tm=get_visit_tmap("arrest_first_visit"),
                events_names_list=arrest_list,
                double=True,
            ),
            channel_map={"no_arrest": 0, "arrest": 1},
            path_prefix="edw/*/events/{}/start_date",
            time_series_limit=2,
        )
    if tm_name == "arrest_single":
        tm = TensorMap(
            name=tm_name,
            shape=(1,),
            interpretation=Interpretation.CATEGORICAL,
            tensor_from_file=make_general_event_outcome_tensor_from_subevents(
                visit_tm=get_visit_tmap("arrest_first_visit"),
                events_names_list=arrest_list,
                double=False,
            ),
            channel_map={"no_arrest": 0, "arrest": 1},
            path_prefix="edw/*/events/{}/start_date",
            time_series_limit=2,
        )

    return tm
Esempio n. 20
0
def create_age_tmap():
    tmap = TensorMap(
        name="age",
        shape=(1,),
        interpretation=Interpretation.CONTINUOUS,
        tensor_from_file=admin_age_tensor_from_file,
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
        validators=validator_no_negative,
    )
    return tmap
Esempio n. 21
0
 def tensor_from_file(tm: TensorMap, data: PatientData) -> np.ndarray:
     echo_dates = tm.time_series_filter(data)
     mean_gradient_key = continuous_tmap_names_and_keys["av_mean_gradient"]
     mean_gradients = data[ECHO_PREFIX].loc[echo_dates.index,
                                            mean_gradient_key]
     tensor = np.zeros((len(echo_dates), 2))
     for idx, mean_gradient in enumerate(mean_gradients):
         if np.isnan(mean_gradient):
             continue
         tensor[idx, 1 if low <= mean_gradient < high else 0] = 1
     return tensor
Esempio n. 22
0
def create_categorical_tmap(key: str, channel_map: Dict[str, int]) -> TensorMap:
    tmap = TensorMap(
        name=key,
        interpretation=Interpretation.CATEGORICAL,
        tensor_from_file=make_static_tensor_from_file(key),
        channel_map=channel_map,
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
        validators=validator_not_all_zero,
    )
    return tmap
Esempio n. 23
0
def create_continuous_tmap(key: str) -> TensorMap:
    tmap = TensorMap(
        name=key,
        shape=(1,),
        interpretation=Interpretation.CONTINUOUS,
        tensor_from_file=make_static_tensor_from_file(key),
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
        validators=validator_no_negative,
    )
    return tmap
Esempio n. 24
0
def create_static_event_tmap(key: str) -> TensorMap:
    tmap = TensorMap(
        name=key,
        shape=(1,),
        interpretation=Interpretation.EVENT,
        tensor_from_file=make_static_tensor_from_file(key),
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
        validators=validator_no_empty,
    )
    return tmap
Esempio n. 25
0
def create_sex_double_tmap():
    tmap = TensorMap(
        name="sex_double",
        interpretation=Interpretation.CATEGORICAL,
        tensor_from_file=sex_double_tensor_from_file,
        channel_map={"male": 0, "female": 1},
        path_prefix=EDW_PREFIX,
        time_series_limit=2,
        validators=validator_not_all_zero,
    )
    return tmap
Esempio n. 26
0
def create_mrn_tmap():
    tmap = TensorMap(
        name="mrn",
        shape=(1,),
        interpretation=Interpretation.LANGUAGE,
        tensor_from_file=mrn_tensor_from_file,
        path_prefix=EDW_PREFIX,
        time_series_limit=0,
        validators=validator_no_empty,
    )
    return tmap
Esempio n. 27
0
def create_first_visit_tmap(tm_name: str, signal_name: str, data_type: str):
    tm = None
    name = signal_name.replace("|_", "")
    if tm_name == f"{name}_first_visit":
        tm = TensorMap(
            name=tm_name,
            shape=(1,),
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_first_visit_tensor_from_file(),
            path_prefix=f"edw/*/{data_type}/{signal_name}/start_date",
        )
    return tm
Esempio n. 28
0
def create_arrest_first_visit_tmap(tm_name: str):
    events_names_list = ["code_start", "rapid_response_start"]
    tm = None
    if tm_name == "arrest_first_visit":
        tm = TensorMap(
            name=tm_name,
            shape=(1,),
            interpretation=Interpretation.CONTINUOUS,
            tensor_from_file=make_general_first_visit_tensor_from_subset(
                events_names_list,
            ),
            path_prefix="edw/*/events/{}/start_date",
        )
    return tm
Esempio n. 29
0
    def _tensor_from_file(tm: TensorMap, data: PatientData, **kwargs) -> np.ndarray:
        unix_dates = kwargs.get("unix_dates")
        if "visits" in kwargs:
            visits = kwargs["visits"]
            if isinstance(visits, str):
                visits = [visits]
        else:
            visits = tm.time_series_filter(data)

        temp = None
        finalize = False
        if tm.is_timeseries:
            temp = [data[f"{tm.path_prefix}/{v}"].attrs[key] for v in visits]
            max_len = max(map(len, temp))
            shape = (len(visits), max_len)
        else:
            shape = (len(visits),) + tm.shape

        if tm.is_categorical or tm.is_continuous or (tm.is_event and unix_dates):
            tensor = np.zeros(shape)
        elif tm.is_language or (tm.is_event and not unix_dates):
            tensor = np.full(shape, "", object)
            finalize = True
        elif tm.is_timeseries and temp is not None:
            if isinstance(temp[0][0], np.number):
                tensor = np.zeros(shape)
            else:
                tensor = np.full(shape, "", object)
                finalize = True
        else:
            raise ValueError("Unknown interpretation for static ICU data")

        for i, visit in enumerate(visits):
            try:
                path = f"{tm.path_prefix}/{visit}"
                value = data[path].attrs[key] if temp is None else temp[i]
                if tm.channel_map:
                    tensor[i, tm.channel_map[value.lower()]] = 1
                elif tm.is_event and unix_dates:
                    tensor[i] = get_unix_timestamps(value)
                else:
                    tensor[i] = value
            except (ValueError, KeyError) as e:
                logging.debug(f"Error getting {key} from {data.id}/{visit}")
                logging.debug(e)

        if finalize:
            tensor = np.array(tensor, dtype=str)
        return tensor
Esempio n. 30
0
    def test_explore(
        default_arguments_explore: argparse.Namespace,
        tmpdir_factory,
        utils,
    ):
        temp_dir = tmpdir_factory.mktemp("explore_tensors")
        default_arguments_explore.tensors = str(temp_dir)
        tmaps = pytest.TMAPS_UP_TO_4D[:]
        tmaps.append(
            TensorMap(
                "scalar",
                shape=(1, ),
                interpretation=Interpretation.CONTINUOUS,
                tensor_from_file=pytest.TFF,
            ), )
        explore_expected = utils.build_hd5s(temp_dir,
                                            tmaps,
                                            n=pytest.N_TENSORS)
        default_arguments_explore.num_workers = 3
        default_arguments_explore.tensor_maps_in = tmaps
        default_arguments_explore.explore_export_fpath = True
        explore(default_arguments_explore)

        csv_path = os.path.join(
            default_arguments_explore.output_folder,
            "tensors_union.csv",
        )
        explore_result = pd.read_csv(csv_path)

        for row in explore_result.iterrows():
            row = row[1]
            for tm in tmaps:
                row_expected = explore_expected[(row["fpath"], tm)]
                if _tmap_requires_modification_for_explore(tm):
                    actual = getattr(row,
                                     continuous_explore_header(tm) + "_mean")
                    assert not np.isnan(actual)
                    continue
                if tm.is_continuous:
                    actual = getattr(row, continuous_explore_header(tm))
                    assert actual == row_expected
                    continue
                if tm.is_categorical:
                    for channel, idx in tm.channel_map.items():
                        channel_val = getattr(
                            row,
                            categorical_explore_header(tm, channel),
                        )
                        assert channel_val == row_expected[idx]