import tensorflow as tf import tensormodel as nn # XOR with Relu (delta) x_data = [[0, 0], [0, 1], [1, 0], [1, 1]] y_data = [[0], [1], [1], [0]] X = nn.DefPlaceHolder(2, 'Input') Y = nn.DefPlaceHolder(1, 'Target') hidden = nn.NnFullConnectedLayer(X, 2, 2, nn.relu_tf, bias='Variable') output = nn.NnFullConnectedLayer(hidden.activation, 2, 1, nn.relu_tf, bias='Variable') learn = nn.GradientDescentOptimizer(Y, output) run = nn.RunLearnModel("XOR with Relu") run.Learn(learn, feed_dict={X: x_data, Y: y_data}) run.Test_1(Y, output, feed_dict={X: x_data, Y: y_data})
import tensorflow as tf import numpy as np import tensormodel as nn # implement OR NN machine using tensorflow # define input pattern x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) # define output pattern, rank of output pattern should be equal to input, or tensorflow broadcast output tensor and result is unpredictable y_data = np.array([[0], [1], [1], [1]]) X = tf.placeholder(tf.float32, [None, 2], name="X") Y = tf.placeholder(tf.float32, [None, 1], name="Y") output = nn.NnFullConnectedLayer(X, 2, 1, nn.sigmoid_tf, bias='Variable') learn = nn.GradientDescentOptimizer(Y, output) run = nn.RunLearnModel("OR") run.Learn(learn, feed_dict={X:x_data, Y:y_data}) run.Test_1(Y, output, feed_dict={X:x_data, Y:y_data})