def get_square_matrix(shape, num_charges, dtype=np.float64):
  charge = BaseCharge(
      np.random.randint(-5, 5, (shape, num_charges)),
      charge_types=[U1Charge] * num_charges)
  flows = [True, False]
  indices = [Index(charge, flows[n]) for n in range(2)]
  return BlockSparseTensor.random(indices=indices, dtype=dtype)
def get_zeros(shape, num_charges, dtype=np.float64):
    R = len(shape)
    charges = [
        BaseCharge(np.random.randint(-5, 6, (num_charges, shape[n])),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]
    flows = list(np.full(R, fill_value=False, dtype=np.bool))
    indices = [Index(charges[n], flows[n]) for n in range(R)]
    return BlockSparseTensor.zeros(indices=indices, dtype=dtype)
Esempio n. 3
0
def get_random_symmetric(shape, flows, num_charges, seed=10, dtype=np.float64):
    assert np.all(np.asarray(shape) == shape[0])
    np.random.seed(seed)
    R = len(shape)
    charge = BaseCharge(np.random.randint(-5, 5, (shape[0], num_charges)),
                        charge_types=[U1Charge] * num_charges)

    indices = [Index(charge, flows[n]) for n in range(R)]
    return BlockSparseTensor.random(indices=indices, dtype=dtype)
Esempio n. 4
0
def test_sparse_shape(num_charges):
    np.random.seed(10)
    dtype = np.float64
    shape = [10, 11, 12, 13]
    R = len(shape)
    charges = [
        BaseCharge(np.random.randint(-5, 5, (shape[n], num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]
    flows = list(np.full(R, fill_value=False, dtype=np.bool))
    indices = [Index(charges[n], flows[n]) for n in range(R)]
    a = BlockSparseTensor.random(indices=indices, dtype=dtype)
    node = tn.Node(a, backend='symmetric')
    for s1, s2 in zip(node.sparse_shape, indices):
        assert s1 == s2
Esempio n. 5
0
def get_ones(shape, dtype=np.float64):
    R = len(shape)
    charges = [U1Charge(np.random.randint(-5, 5, shape[n])) for n in range(R)]
    flows = list(np.full(R, fill_value=False, dtype=np.bool))
    indices = [Index(charges[n], flows[n]) for n in range(R)]
    return BlockSparseTensor.ones(indices=indices, dtype=dtype)