def train_dataloader(self): ds_train = MultiLabelDataset(folder=self.hparams.data, is_train='train', fname='covid_train_v5.csv', types=self.hparams.types, pathology=self.hparams.pathology, resize=int(self.hparams.shape), balancing=None) ds_train.reset_state() ag_train = [ # imgaug.Albumentations( # AB.SmallestMaxSize(self.hparams.shape, p=1.0)), imgaug.ColorSpace(mode=cv2.COLOR_GRAY2RGB), # imgaug.Affine(shear=10), imgaug.RandomChooseAug([ imgaug.Albumentations(AB.Blur(blur_limit=4, p=0.25)), imgaug.Albumentations(AB.MotionBlur(blur_limit=4, p=0.25)), imgaug.Albumentations(AB.MedianBlur(blur_limit=4, p=0.25)), ]), imgaug.Albumentations(AB.CLAHE(tile_grid_size=(32, 32), p=0.5)), imgaug.RandomOrderAug([ imgaug.Affine(shear=10, border=cv2.BORDER_CONSTANT, interp=cv2.INTER_AREA), imgaug.Affine(translate_frac=(0.01, 0.02), border=cv2.BORDER_CONSTANT, interp=cv2.INTER_AREA), imgaug.Affine(scale=(0.5, 1.0), border=cv2.BORDER_CONSTANT, interp=cv2.INTER_AREA), ]), imgaug.RotationAndCropValid(max_deg=10, interp=cv2.INTER_AREA), imgaug.GoogleNetRandomCropAndResize( crop_area_fraction=(0.8, 1.0), aspect_ratio_range=(0.8, 1.2), interp=cv2.INTER_AREA, target_shape=self.hparams.shape), imgaug.ColorSpace(mode=cv2.COLOR_RGB2GRAY), imgaug.ToFloat32(), ] ds_train = AugmentImageComponent(ds_train, ag_train, 0) # Label smoothing ag_label = [ imgaug.BrightnessScale((0.8, 1.2), clip=False), ] # ds_train = AugmentImageComponent(ds_train, ag_label, 1) ds_train = BatchData(ds_train, self.hparams.batch, remainder=True) if self.hparams.debug: ds_train = FixedSizeData(ds_train, 2) ds_train = MultiProcessRunner(ds_train, num_proc=4, num_prefetch=16) ds_train = PrintData(ds_train) ds_train = MapData( ds_train, lambda dp: [ torch.tensor(np.transpose(dp[0], (0, 3, 1, 2))), torch.tensor(dp[1]).float() ]) return ds_train
def train_dataloader(self): """Summary Returns: TYPE: Description """ ds_train = CustomDataSet(folder=self.hparams.data, train_or_valid='train', size=np.inf, hparams=self.hparams) ds_train.reset_state() ag_train = [ imgaug.Affine(shear=10, interp=cv2.INTER_NEAREST), imgaug.Affine(translate_frac=(0.01, 0.02), interp=cv2.INTER_NEAREST), imgaug.Affine(scale=(0.25, 1.0), interp=cv2.INTER_NEAREST), imgaug.RotationAndCropValid(max_deg=10, interp=cv2.INTER_NEAREST), imgaug.GoogleNetRandomCropAndResize( crop_area_fraction=(0.8, 1.0), aspect_ratio_range=(0.8, 1.2), interp=cv2.INTER_NEAREST, target_shape=self.hparams.shape), imgaug.Resize(self.hparams.shape, interp=cv2.INTER_NEAREST), imgaug.Flip(horiz=True, vert=False, prob=0.5), imgaug.Flip(horiz=False, vert=True, prob=0.5), imgaug.Transpose(prob=0.5), imgaug.Albumentations(AB.RandomRotate90(p=1)), imgaug.ToFloat32(), ] ds_train = AugmentImageComponent( ds_train, [ # imgaug.Float32(), # imgaug.RandomChooseAug([ # imgaug.Albumentations(AB.IAAAdditiveGaussianNoise(p=0.25)), # imgaug.Albumentations(AB.GaussNoise(p=0.25)), # ]), # imgaug.ToUint8(), imgaug.RandomChooseAug([ imgaug.Albumentations(AB.Blur(blur_limit=4, p=0.25)), imgaug.Albumentations(AB.MotionBlur(blur_limit=4, p=0.25)), imgaug.Albumentations(AB.MedianBlur(blur_limit=4, p=0.25)), ]), imgaug.RandomChooseAug([ # imgaug.Albumentations(AB.IAASharpen(p=0.5)), # imgaug.Albumentations(AB.IAAEmboss(p=0.5)), imgaug.Albumentations(AB.RandomBrightnessContrast(p=0.5)), ]), imgaug.ToUint8(), imgaug.Albumentations(AB.CLAHE(tile_grid_size=(32, 32), p=0.5)), ], 0) ds_train = AugmentImageComponents(ds_train, ag_train, [0, 1]) ds_train = BatchData(ds_train, self.hparams.batch, remainder=True) if self.hparams.debug: ds_train = FixedSizeData(ds_train, 2) ds_train = MultiProcessRunner(ds_train, num_proc=4, num_prefetch=16) ds_train = PrintData(ds_train) ds_train = MapData( ds_train, lambda dp: [ torch.tensor(dp[0][:, np.newaxis, :, :]).float(), torch.tensor(dp[1][:, np.newaxis, :, :]).float(), ]) return ds_train