Esempio n. 1
0
 def _init_runtime(self):
     if self.idx != 0:
         from tensorpack.models._common import disable_layer_logging
         disable_layer_logging()
     self.func = OfflinePredictor(self.config)
     if self.idx == 0:
         describe_model()
Esempio n. 2
0
 def _init_runtime(self):
     """ Call _init_runtime under different CUDA_VISIBLE_DEVICES, you'll
         have workers that run on multiGPUs
     """
     if self.idx != 0:
         from tensorpack.models._common import disable_layer_logging
         disable_layer_logging()
     self.func = OfflinePredictor(self.config)
     if self.idx == 0:
         describe_model()
Esempio n. 3
0
 def _init_runtime(self):
     """ Call _init_runtime under different CUDA_VISIBLE_DEVICES, you'll
         have workers that run on multiGPUs
     """
     if self.idx != 0:
         from tensorpack.models._common import disable_layer_logging
         disable_layer_logging()
     self.func = OfflinePredictor(self.config)
     if self.idx == 0:
         describe_model()
Esempio n. 4
0
 def _init_runtime(self):
     if self.gpuid >= 0:
         logger.info("Worker {} uses GPU {}".format(self.idx, self.gpuid))
         os.environ['CUDA_VISIBLE_DEVICES'] = str(self.gpuid)
     else:
         logger.info("Worker {} uses CPU".format(self.idx))
         os.environ['CUDA_VISIBLE_DEVICES'] = ''
     G = tf.Graph()     # build a graph for each process, because they don't need to share anything
     with G.as_default():
         if self.idx != 0:
             from tensorpack.models._common import disable_layer_logging
             disable_layer_logging()
         self.func = get_predict_func(self.config)
         if self.idx == 0:
             describe_model()
Esempio n. 5
0
 def _init_runtime(self):
     if self.gpuid >= 0:
         logger.info("Worker {} uses GPU {}".format(self.idx, self.gpuid))
         os.environ['CUDA_VISIBLE_DEVICES'] = str(self.gpuid)
     else:
         logger.info("Worker {} uses CPU".format(self.idx))
         os.environ['CUDA_VISIBLE_DEVICES'] = ''
     G = tf.Graph()     # build a graph for each process, because they don't need to share anything
     with G.as_default():
         if self.idx != 0:
             from tensorpack.models._common import disable_layer_logging
             disable_layer_logging()
         self.func = get_predict_func(self.config)
         if self.idx == 0:
             describe_model()