Esempio n. 1
0
  def step(self, inputs, states=None):
    def dimensions(x):
      dim = tf.ones([tf.size(tf.shape(x))], dtype=tf.int32)
      return tf.concat([[self.size], dim], axis=0)

    inputs_0 = map_fn(inputs, [inputs], lambda i: i[0])
    # Run the model without state to get the dtype
    op_value, next_state, init_state = self.operator(
      inputs_0, streamable=False)

    if states is None:
      extended_init_state = map_fn(init_state, [init_state],
        lambda x: tf.tile(tf.expand_dims(x, axis=0), dimensions(x)))
      states = (extended_init_state,)

    prev_state = states[0]

    state_dtype = map_fn(prev_state, [prev_state], lambda x: x.dtype) 
    output_dtype = map_fn(op_value, [op_value], lambda o: o.dtype)

    def apply_op(inputs_states):
      outputs, new_state, _ = self.operator(
        inputs=inputs_states[0],
        state=inputs_states[1],
        streamable=False
      )
      return outputs, new_state

    outputs, next_state = tf.map_fn(
      apply_op,
      (inputs, prev_state),
      dtype=(output_dtype, state_dtype)
    )
    return outputs, (next_state,), (prev_state,)
Esempio n. 2
0
    def __call__(self, inputs, state=None, streamable=True):
        # Preprocessing to convert python literals into tensors.
        inputs = map_fn(inputs, [inputs], lambda x: tf.convert_to_tensor(x))
        if not state is None:
            state = map_fn(state, [state], lambda x: tf.convert_to_tensor(x))

        if streamable:
            return self.call_streamed(inputs, state)
        else:
            return self.forward_step(inputs, state)
Esempio n. 3
0
        def loop(i, loop_inputs, loop_state, loop_outputs):
            inputs_i = map_fn(loop_inputs, [loop_inputs], lambda x: x[i])

            outputs_i, next_state, _ = self.forward_step(inputs_i, loop_state)

            Streamable.check_types_equality(
                Streamable.to_type(loop_state), Streamable.to_type(next_state),
                "Provided state and model state has different types (%s != %s)."
            )

            new_outputs = map_fn(outputs_i, [outputs_i, loop_outputs],
                                 lambda x, y: y.write(i, x))
            map_fn(
                loop_state, [loop_state, next_state],
                lambda x, y: tf.convert_to_tensor(y).set_shape(
                    tf.convert_to_tensor(x).get_shape()))
            return (i + 1, loop_inputs, next_state, new_outputs)
Esempio n. 4
0
    def step(self, inputs, states=None):
        if states is None:
            states = (0, )

        iteration = states[0]
        inp = map_fn(
            inputs, [inputs],
            lambda x: tf.cond(tf.less(iteration, self.period), lambda: tf.fill(
                tf.shape(x), self.value), lambda: x))
        return inp, (iteration + 1, ), (iteration, )
Esempio n. 5
0
def any_value(inputs, value):
    """
  Given tensors in parameters, returns true if one
  of them contains the given value.
  """
    has_value_inputs = flatten(
        map_fn(inputs, [inputs], lambda i: tensor_has_value(i, value)))

    return functools.reduce(lambda acc, x: tf.logical_or(acc, x),
                            has_value_inputs, tf.constant(False))
Esempio n. 6
0
def any_nan(inputs):
    """
  Given tensors in parameters, return true if one
  of them has a nan value.
  """

    has_nan_inputs = flatten(
        map_fn(inputs, [inputs], lambda i: tensor_has_nan(i)))

    return functools.reduce(lambda acc, x: tf.logical_or(acc, x),
                            has_nan_inputs, tf.constant(False))
Esempio n. 7
0
 def test_map_fn_complex_type(self):
     x = {'a': [{'x': 4, 'y': 3}, 3], 'b': {'z': [1, 3]}}
     expected = {'a': [{'x': 8, 'y': 6}, 6], 'b': {'z': [2, 6]}}
     self.assertEqual(map_fn(x, [x], times_2), expected)
Esempio n. 8
0
 def test_map_fn_dict(self):
     x = {'a': 4, 'b': 10}
     self.assertEqual(map_fn(x, [x], times_2), {'a': 8, 'b': 20})
Esempio n. 9
0
 def test_map_fn_list(self):
     x = [2, 3, 4, 5]
     self.assertEqual(map_fn(x, [x], times_2), [4, 6, 8, 10])
Esempio n. 10
0
 def test_map_fn_single_value(self):
     x = 4
     self.assertEqual(map_fn(x, [x], times_2), 8)
Esempio n. 11
0
    def call_streamed(self, inputs_tensors, provided_state):
        """
    Stream inputs_tensors into the operator. The variable provided_state can
    be None if initial state is not provided by the user or it can be a compatible
    initial state provided by the user.
    """

        inputs_sizes = tuple(
            map(lambda x: tf.shape(x)[0], flatten(inputs_tensors)))
        size = inputs_sizes[0]
        same_size = functools.reduce(
            lambda acc, x: tf.logical_and(acc, tf.equal(x, size)),
            inputs_sizes, tf.constant(True))

        assert_same_size = tf.assert_equal(
            same_size,
            tf.constant(True),
            data=inputs_sizes,
            message="inputs have different sizes.")

        inputs_0 = map_fn(inputs_tensors, [inputs_tensors], lambda x: x[0])
        outputs_0, state, initial_state = self.forward_step(
            inputs_0, provided_state)

        # if state is provided, we take it as the initial value.
        if not provided_state is None:
            initial_state = provided_state

        def cond(i, loop_inputs, loop_state, outputs):
            return i < size

        def loop(i, loop_inputs, loop_state, loop_outputs):
            inputs_i = map_fn(loop_inputs, [loop_inputs], lambda x: x[i])

            outputs_i, next_state, _ = self.forward_step(inputs_i, loop_state)

            Streamable.check_types_equality(
                Streamable.to_type(loop_state), Streamable.to_type(next_state),
                "Provided state and model state has different types (%s != %s)."
            )

            new_outputs = map_fn(outputs_i, [outputs_i, loop_outputs],
                                 lambda x, y: y.write(i, x))
            map_fn(
                loop_state, [loop_state, next_state],
                lambda x, y: tf.convert_to_tensor(y).set_shape(
                    tf.convert_to_tensor(x).get_shape()))
            return (i + 1, loop_inputs, next_state, new_outputs)

        i0 = tf.constant(0)
        outputs = map_fn(outputs_0, [outputs_0],
                         lambda x: tf.TensorArray(dtype=x.dtype, size=size))

        with tf.control_dependencies([assert_same_size]):
            i_f, inputs_f, state_f, outputs_f = tf.while_loop(
                cond,
                loop,
                loop_vars=[i0, inputs_tensors, initial_state, outputs],
                name="stream_loop")

        outputs = map_fn(outputs_f, [outputs_f], lambda o: o.stack())
        return (outputs, state_f, initial_state)
Esempio n. 12
0
 def to_type(values):
     return map_fn(
         values, [values], lambda val: val.dtype
         if isinstance(val, tf.Tensor) else tf.convert_to_tensor(val).dtype)