Esempio n. 1
0
def plotTCs(activity_tensor, targets, R, title=''):
    U = tt.cp_als(activity_tensor, rank=R, verbose=False)
    tt.plot_factors(U.factors, targets, plots=['scatter', 'line', 'bar'])
    plt.title(title)
    #plt.show()
    # plt.savefig('tensorFactors.pdf')
    #return neuron factors
    return U.factors[2][:,0]
Esempio n. 2
0
def tca(X,
        non_neg=True,
        R=10,
        prefix="",
        max_iter=500,
        epoc="all",
        effect="all"):

    # Fit CP tensor decomposition (two times).
    U = None
    V = None
    opti_str = 'ncp_bcd_'
    if non_neg:
        U = tt.ncp_bcd(X, rank=R, verbose=True, max_iter=max_iter, tol=1e-6)
        V = tt.ncp_bcd(X, rank=R, verbose=True, max_iter=max_iter, tol=1e-6)
    else:
        U = tt.cp_als(X, rank=R, verbose=True, max_iter=max_iter, tol=1e-6)
        V = tt.cp_als(X, rank=R, verbose=True, max_iter=max_iter, tol=1e-6)
        opti_str = 'cp_als_'
    # Compare the low-dimensional factors from the two fits.
    # fig, ax, po = tt.plot_factors(U.factors)
    # tt.plot_factors(V.factors, fig=fig)
    # fig.suptitle("raw models")
    # fig.tight_layout()

    # Align the two fits and print a similarity score.
    sim = tt.kruskal_align(U.factors,
                           V.factors,
                           permute_U=True,
                           permute_V=True)
    print(sim)

    # Plot the results again to see alignment.
    fig, ax, po = tt.plot_factors(U.factors,
                                  plots=["scatter", "scatter", "line"])
    tt.plot_factors(V.factors, plots=["scatter", "scatter", "line"], fig=fig)
    [x.set_xticks([11.5, 15.5, 27.5, 31.5]) for x in ax[:, 2]]

    ax[-1, 0].set_xlabel("SU #")
    ax[-1, 1].set_xlabel("Trial #")
    ax[-1, 2].set_xlabel("Time (s)")
    ax[-1, 2].set_xticklabels(["S", "+1", "T", "+1"])

    fig.suptitle("aligned models")
    fig.tight_layout()

    # Show plots.
    plt.show()
    fig.set_size_inches(40, 40)
    fig.set_dpi(300)
    fig.savefig(
        opti_str + prefix + "tca_trial_" + epoc + "_" + effect + "_" +
        str(X.shape[1]) + "_R" + str(R) + ".png",
        dpi=300,
        bbox_inches="tight",
    )
    return (U, V, sim)
Esempio n. 3
0
def cp_als_test():
    # Create synthetic dataset.
    I, J, K, R = 25, 25, 25, 3  # dimensions and rank parameters
    # Create a random tensor consisting of a low-rank component and noise.
    X = tensortools.randn_ktensor((I, J, K), rank=R).full()
    X += np.random.randn(I, J, K)  # add some random noise

    # Perform CP tensor decomposition.
    U = tensortools.cp_als(X, rank=R, verbose=True)
    V = tensortools.cp_als(X, rank=R, verbose=True)

    # Compare the low-dimensional factors from the two fits.
    fig, _, _ = tensortools.plot_factors(U.factors)
    tensortools.plot_factors(V.factors, fig=fig)

    # Align the two fits and print a similarity score.
    similarity_score = tensortools.kruskal_align(U.factors,
                                                 V.factors,
                                                 permute_U=True,
                                                 permute_V=True)
    print(similarity_score)

    # Plot the results to see alignment.
    fig, ax, po = tensortools.plot_factors(U.factors)
    tensortools.plot_factors(V.factors, fig=fig)

    plt.show()
for x in dir_list:
    file_list = file_list + glob.glob(x + '/**/' + '*.h5',recursive=True)

file  = 4

this_dir = file_list[file].split(sep='/')[-2]
data_dir = os.path.dirname(file_list[file])
data = ephys_data(data_dir = data_dir ,file_id = file, use_chosen_units = True)
data.firing_rate_params = dict(zip(['step_size','window_size','total_time','calc_type','baks_len'],
                               [25,250,7000,'conv',700]))
data.get_data()
data.get_firing_rates()
data.get_normalized_firing()
data.firing_overview('off')

all_firing_array = np.asarray(data.all_normal_off_firing)

#taste = 2
X = all_firing_array.swapaxes(1,2) #data.all_normal_off_firing[:,:,100:200].swapaxes(1,2) #
rank = 7

# Fit CP tensor decomposition (two times).
U = tt.cp_als(X, rank=rank, verbose=True)

# Compare the low-dimensional factors from the two fits.
fig, _, _ = tt.plot_factors(U.factors)

## We should be able to see differences in tastes by using distance matrices on trial factors
trial_factors = U.factors.factors[-1]
trial_distances = dist_mat(trial_factors,trial_factors)
plt.figure();plt.imshow(trial_distances)
import tensortools as tt
import numpy as np
import matplotlib.pyplot as plt

# Make synthetic dataset.
I, J, K, R = 25, 25, 25, 4  # dimensions and rank
X = tt.randn_ktensor((I, J, K), rank=R).full()
X += np.random.randn(I, J, K)  # add noise

# Fit CP tensor decomposition (two times).
U = tt.cp_als(X, rank=R, verbose=True)
V = tt.cp_als(X, rank=R, verbose=True)

# Compare the low-dimensional factors from the two fits.
fig, _, _ = tt.plot_factors(U.factors)
tt.plot_factors(V.factors, fig=fig)

# Align the two fits and print a similarity score.
sim = tt.kruskal_align(U.factors, V.factors, permute_U=True, permute_V=True)
print(sim)

# Plot the results again to see alignment.
fig, ax, po = tt.plot_factors(U.factors)
tt.plot_factors(V.factors, fig=fig)

# Show plots.
plt.show()

# =============================================================================
# =============================================================================
Esempio n. 6
0
@author: Yongjie Zhu
"""

import tensortools as tt
import matplotlib.pyplot as plt
import scipy.io as scio
import numpy as np
from mne.viz import plot_connectivity_circle

Sim = scio.loadmat("simulatedData.mat")
X = Sim[
    'Sim']  # X[i,j,k] represents the connectivity value in time points k, freq bin j and paires (nodes) i
freq_index = np.linspace(3, 45, 169)
# Fit CP tensor decomposition .
U = tt.ncp_hals(X, rank=3, verbose=True)  # _bcd or _als for options
fig, ax, po = tt.plot_factors(U.factors)
plt.show()
# visulazation
Nroi = 64  # number of rois
R = 3  # number of components
for index in range(R):
    # temporal courses
    plt.subplot(R, R, index * R + 1)
    plt.plot(U.factors.factors[2][:, index])
    if not index:
        plt.title('Temporal courses')
        plt.xlabel('Time/s')
    # spectra
    plt.subplot(R, R, index * R + 2)
    plt.plot(freq_index, U.factors.factors[1][:, index])
    if not index:
# colors = range(np.int(X.shape[1]))/np.max(range(np.int(X.shape[1])))
# for time in (trial_num+1)*np.arange(np.int(X.shape[1])):
#     ax.scatter(X_embedded[time,0],X_embedded[time,1],c='red')
# =============================================================================

# Fit CP tensor decomposition (two times).
rank = 5
repeats = 30
all_models = []
all_obj = []
for repeat in tqdm(range(repeats)):
    U = tt.cp_als(X, rank=rank, verbose=False)
    all_models.append(U)
    all_obj.append(U.obj)

U = all_models[np.argmin(all_obj)]

tt.plot_factors(U.factors)

## We should be able to see differences in tastes by using distance matrices on trial factors
trial_factors = U.factors.factors[-1]
trial_distances = dist_mat(trial_factors, trial_factors)
plt.figure()
plt.imshow(exposure.equalize_hist(trial_distances))

## Cluster trials using tsne
trial_labels = np.sort([0, 1, 2, 3] * 15)
X_embedded = tsne(n_components=2, perplexity=40).fit_transform(trial_factors)
plt.figure()
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=trial_labels)
Esempio n. 8
0
def run_pipeline(filename):

    data = lm.loadmat(filename)
    session_name = os.path.basename(filename)[0:-4]
    (good_cells, pos_edges, trial_idx, spikelocations, spike_idx,
     location_vec) = prepareData(data)
    n_trials = 30
    n_cells = len(good_cells)
    shape = (n_cells, len(pos_edges) - 1, n_trials)
    counts = np.zeros(shape, dtype=float)
    _fast_bin(counts, trial_idx, spikelocations, spike_idx)

    occupancy = np.zeros((len(pos_edges) - 1, n_trials), dtype=float)
    _fast_occ(occupancy, data['trial'] - 1, location_vec)

    for iT in range(n_trials):
        tmp = occupancy[:, iT]
        idx_v = np.flatnonzero(tmp)
        idx_n = np.flatnonzero(tmp == 0)
        tmp[idx_n] = np.interp(idx_n, idx_v, tmp[idx_v])
        occupancy[:, iT] = tmp

    spMapN = np.zeros(counts.shape)
    for iC in range(n_cells):
        spMapN[iC, :, :] = np.divide(counts[iC, :, :], occupancy)

    spMapN = spi.gaussian_filter(spMapN, (0, 2, 0))

    n_cells = len(good_cells)
    n_bins = len(pos_edges) - 1
    spFlat = np.zeros((n_cells, n_trials * n_bins))

    for iC in range(n_cells):
        spFlat[iC, :] = spMapN[iC, :, :].ravel(order='F')
    #spFlat = spFlat-spFlat.mean(axis=1)[:,np.newaxis]
    spFlat = normalize(spFlat, axis=0, norm='l2')
    for iC in range(n_cells):
        for iT in range(n_trials):
            start = iT * n_bins
            stop = (iT + 1) * n_bins
            trial_idx = np.arange(start, stop)
            tmp = spFlat[iC, trial_idx]
            spMapN[iC, :, iT] = tmp

    R = 5
    # Fit CP tensor decomposition (two times).
    U = tt.ncp_bcd(spMapN, rank=R, verbose=False)
    V = tt.ncp_bcd(spMapN, rank=R, verbose=False)

    # Align the two fits and print a similarity score.
    sim = tt.kruskal_align(U.factors,
                           V.factors,
                           permute_U=True,
                           permute_V=True)
    #print(sim)

    # Plot the results again to see alignment.
    fig, ax, po = tt.plot_factors(U.factors)
    tt.plot_factors(V.factors, fig=fig)
    fig.suptitle("aligned models")
    fig.tight_layout()
    fig.savefig('C:\\temp\\try3\\' + session_name + '_tca.png')

    ff = np.matmul(np.transpose(spFlat), spFlat)
    plt.figure()
    ax = plt.imshow(ff)
    plt.colorbar()
    plt.axvline(x=n_bins * 20, color='red', ls='--', linewidth=1)
    plt.axvline(x=n_bins * 21, color='green', ls='--', linewidth=1)
    plt.axhline(y=n_bins * 20, color='red', ls='--', linewidth=1)
    plt.axhline(y=n_bins * 21, color='green', ls='--', linewidth=1)
    plt.savefig('C:\\temp\\try3\\' + session_name + '_cov.png')
    plt.close('all')