y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # loss cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(5e-3).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(200): print(i) batch = mnist.train.next_batch(100) if i % 5 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0 }) print('step %d, trainning accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) ans = accuracy.eval(feed_dict={
""" your model should support the following code """ # create model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) # get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # train for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # eval correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))