def weight_variable(shape): initial = tf.random_normal(shape, stddev=0.1) return tf.Variable(initial)
def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)
""" import your model here """ import tensorwolf as tf """ your model should support the following code """ import numpy as np sess = tf.Session() # linear model W = tf.Variable([.5], dtype=tf.float32) b = tf.Variable([1.5], dtype=tf.float32) x = tf.placeholder(tf.float32) linear_model = W * x + b init = tf.global_variables_initializer() sess.run(init) ans = sess.run(linear_model, {x: [1, 2, 3, 4]}) assert np.array_equal(ans, [2, 2.5, 3, 3.5])
""" import your model here """ import tensorwolf as tf """ your model should support the following code """ # create model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) # get the mnist dataset (use tensorflow here) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # train for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # eval correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
def multilayer_perceptron(x, weights, biases): # Hidden layer with RELU activation layer_1 = tf.matmul(x, weights['h1']) + biases['b1'] layer_1 = tf.nn.relu(layer_1) # Hidden layer with RELU activation layer_2 = tf.matmul(layer_1, weights['h2']) + biases['b2'] layer_2 = tf.nn.relu(layer_2) # Output layer with linear activation out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer # Store layers weight & bias weights = { 'h1': tf.Variable(tf.zeros([n_input, n_hidden_1])), 'h2': tf.Variable(tf.zeros([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))