Esempio n. 1
0
def test_reuse_dropout():
    x1 = tx.Constant(np.ones(shape=[2, 4]), dtype=tf.float32)
    x2 = tx.Activation(x1)
    drop1 = tx.Dropout(x2, probability=0.5, locked=True)

    assert len(drop1.inputs) == 2
    assert drop1.inputs[0] is x2
    assert drop1.inputs[-1] is drop1.layer_state.mask

    # shared state overrides mask?
    _, mask = tx.dropout(x2, return_mask=True)
    drop2 = drop1.reuse_with(x2, mask)

    assert len(drop2.inputs) == 2
    assert drop2.inputs[0] is x2
    assert drop2.inputs[-1] is drop2.layer_state.mask

    assert not tx.tensor_equal(drop1(), drop2())

    graph = tx.Graph.build(inputs=None, outputs=[drop1, drop2])

    out1, out2 = graph()
    assert tx.tensor_equal(out1, out2)

    drop1 = tx.Dropout(x2, probability=0.5)
    drop2 = drop1.reuse_with(x1)

    graph.eval(drop1, drop2)
Esempio n. 2
0
def test_add_optimizer():
    target = tx.Constant([[1.]])
    inputs = tx.Input(n_units=2, name="inputs")
    output = tx.Linear(inputs, n_units=1, name="y")

    loss = tx.Lambda(target,
                     output,
                     fn=tf.nn.softmax_cross_entropy_with_logits,
                     name="xent")

    m = tx.Model(run_outputs=output,
                 train_inputs=[inputs, target],
                 train_loss=loss)

    lr = tx.Param(init_value=0.2, name="lr")
    optimizer1 = m.set_optimizer(tf.optimizers.SGD, lr=lr)
    optimizer2: tf.optimizers.Optimizer = m.optimizer

    assert optimizer1 == optimizer2

    # optimizer is hashable
    opt_dict = {optimizer1: 0, optimizer2: 1}
    assert optimizer1 in opt_dict
    assert opt_dict[optimizer1] == 1

    lr.value = 0.3
    assert np.float32(0.3) == optimizer1.lr.numpy()
Esempio n. 3
0
def test_linear():
    inputs = tx.Constant(tf.ones([2, 4]), dtype=tf.float64)
    inputs2 = inputs * 2

    linear = tx.Linear(inputs, n_units=8, dtype=tf.float64)

    w = linear.weights
    b = linear.bias

    assert w.shape == [4, 8]
    assert b.shape == [8]
    assert len(linear.trainable_variables) == 2

    t1 = linear()
    t2 = linear()

    assert tx.tensor_equal(t1, t2)

    linear2 = tx.Linear(linear.inputs[0],
                        8,
                        share_state_with=linear,
                        dtype=tf.float64)
    t3 = linear2()
    assert tx.tensor_equal(t1, t3)

    linear = tx.Linear(inputs, 8, dtype=tf.float64)
    linear2 = linear.reuse_with(inputs2)

    assert linear.weights is linear2.weights
    assert linear.bias is linear2.bias

    assert tx.tensor_equal(linear() * 2, linear2())
Esempio n. 4
0
def test_variable_checkpoint(tmp_path):
    inputs = tx.Constant(tf.ones([2, 4]))
    l1 = tx.Linear(inputs, 3, add_bias=True, name="l1")
    l2 = tx.Linear(inputs, 3, add_bias=False, name="l1")

    # track: AutoTrackable = l1.layer_state

    checkpoint = tf.train.Checkpoint(l1=l1)
    manager = tf.train.CheckpointManager(checkpoint,
                                         tmp_path / 'ckpts',
                                         max_to_keep=1)
    manager.save(1)
    # manager.save(2)

    l1.weights.assign(l2.weights.value())

    status = checkpoint.restore(manager.latest_checkpoint)
    status.assert_existing_objects_matched()

    checkpoint_vars = tf.train.list_variables(manager.latest_checkpoint)
    assert len(checkpoint_vars) == 4
    assert checkpoint_vars[0][0] == '_CHECKPOINTABLE_OBJECT_GRAPH'
    assert "l1/bias" in checkpoint_vars[1][0]
    assert "l1/weights" in checkpoint_vars[2][0]
    assert "save_counter" in checkpoint_vars[3][0]
Esempio n. 5
0
def test_conv1d():
    n_features = 3
    embed_size = 128
    seq_size = 3
    batch_size = 2

    inputs = tx.Constant(np.random.random([batch_size, seq_size]),
                         n_units=seq_size,
                         dtype=tf.int32)
    emb = tx.Lookup(inputs,
                    seq_size=seq_size,
                    embedding_shape=[n_features, embed_size])
    seq = emb()

    n_units = 100
    filter_size = 4
    cnn = tf.keras.layers.Conv1D(filters=n_units,
                                 kernel_size=filter_size,
                                 padding='same')

    res = cnn(seq)

    cnn2 = tx.Conv1D(emb, n_units=100, filter_size=filter_size)
    res2 = cnn2(seq)

    assert len(cnn.variables) == len(cnn.variables)

    cnn.kernel = cnn2.filters
    cnn.bias = cnn2.bias
    res3 = cnn(seq)

    assert not tx.tensor_equal(res, res2)
    assert tx.tensor_equal(res2, res3)
Esempio n. 6
0
def test_conv1d():
    num_filters = 2
    input_dim = 4
    seq_size = 3
    batch_size = 2
    filter_size = 2

    filter_shape = [filter_size, input_dim, num_filters]

    x = tf.ones([batch_size, seq_size, input_dim])
    x_layer = tx.Constant(x, input_dim)

    filters = tf.ones(filter_shape)
    conv_layer = tx.Conv1D(x_layer, num_filters, filter_size, filters=filters)
    conv = tf.nn.conv1d(input=x,
                        filters=filters,
                        stride=1,
                        padding="SAME",
                        data_format="NWC")

    output = conv_layer()
    assert tx.tensor_equal(conv, output)
    assert tx.tensor_equal(tf.shape(conv_layer.filters),
                           [filter_size, input_dim, num_filters])
    assert tx.tensor_equal(tf.shape(output),
                           [batch_size, seq_size, num_filters])
Esempio n. 7
0
def test_mul():
    # also tests graphs with constants
    inputs = tx.Constant(tf.constant(2), dtype=tf.float64)
    inputs2 = inputs * 2
    assert tx.tensor_equal(inputs2(), inputs() * 2)

    inputs2_fn = tf.function(inputs2.__call__)
    assert inputs2_fn() == inputs2()
Esempio n. 8
0
def test_module_reuse_order():
    x1 = tx.Input([[2.]], n_units=1, name="x1")
    x2 = tx.Input([[2.]], n_units=1, name="x2")
    x3 = tx.Input([[1.]], n_units=1, name="x3")

    h = tx.Add(x2, x3)
    y = tx.Add(x1, h)

    module = tx.Module(inputs=[x1, x2, x3], output=y)

    x1_ = tx.Constant([[2.]], name="x1b")
    x2_ = tx.Constant([[2.]], name="x2b")

    m2 = module.reuse_with(x1_, x2_)

    m1 = module()
    m2 = m2()

    assert tx.tensor_equal(m1, m2)
Esempio n. 9
0
def test_constant_save(tmp_path):
    tmp_path = tmp_path.joinpath("custom")
    save_path = str(tmp_path)

    l1 = tx.Constant(tf.constant(42.))

    assert l1() == 42.
    tf.saved_model.save(l1, save_path)

    loaded = tf.saved_model.load(save_path)
    assert loaded() == 42.
Esempio n. 10
0
def test_model_vars():
    target = tx.Constant([[1.]])
    inputs = tx.Input(n_units=2, name="inputs", constant=False)
    output = tx.Linear(inputs, n_units=1, name="y")
    loss = tx.Lambda(target,
                     output,
                     fn=tf.nn.softmax_cross_entropy_with_logits,
                     name="xent")

    m = tx.Model(run_outputs=output,
                 train_inputs=[inputs, target],
                 train_loss=loss)
    assert m.trainable_variables == output.trainable_variables
Esempio n. 11
0
def test_graph_input_order():
    in1 = tx.Input(n_units=1, name="in1", dtype=tf.float32, constant=False)
    in2 = tx.Input(n_units=1, name="in2", dtype=tf.float32, constant=False)
    in12 = tx.Add(in1, in2)
    in3 = tx.Constant(tf.ones(shape=[1], dtype=tf.float32))
    in123 = tx.Add(in12, in3)
    graph = tx.Graph.build(inputs=None, outputs=in123)

    # print("\n")
    # for layer,p in graph.dependency_iter().items():
    #     print(layer.name)
    #     print(p)
    print(list(map(lambda x: x.name, graph.in_nodes)))
Esempio n. 12
0
def test_lookup_sequence_sparse():
    input_dim = 10
    embed_dim = 3
    seq_size = 2
    batch_size = 3

    sparse_input = tf.SparseTensor([[0, 2], [1, 0], [2, 1]], [1, 1, 1],
                                   [3, input_dim])
    sparse_input_1d = tf.SparseTensor([[2], [0], [1]], [1, 1, 1], [input_dim])
    tensor_input = tx.Constant(sparse_input, input_dim)
    tensor_input_1d = tx.Constant(sparse_input_1d, input_dim)

    lookup = tx.Lookup(tensor_input,
                       seq_size,
                       embedding_shape=[input_dim, embed_dim],
                       batch_size=batch_size,
                       batch_padding=False)

    lookup_padding = tx.Lookup(tensor_input,
                               seq_size,
                               embedding_shape=[input_dim, embed_dim],
                               batch_size=batch_size,
                               batch_padding=True)

    lookup_1d = tx.Lookup(tensor_input_1d,
                          seq_size,
                          embedding_shape=[input_dim, embed_dim],
                          batch_size=batch_size,
                          batch_padding=True)

    result = lookup()
    result_padding = lookup_padding()
    result_1d = lookup_1d()

    assert np.shape(result) == (2, seq_size, embed_dim)
    assert np.shape(result_padding) == (batch_size, seq_size, embed_dim)
    assert np.shape(result_1d) == (batch_size, seq_size, embed_dim)
Esempio n. 13
0
def test_multihead_attention():
    """
    TODO check causality

    """
    n_features = 3
    embed_size = 128
    seq_size = 3
    batch_size = 2
    n_heads = 8

    inputs = tx.Constant(np.random.random([batch_size, seq_size]),
                         n_units=seq_size,
                         dtype=tf.int32)
    emb = tx.Lookup(inputs,
                    seq_size=seq_size,
                    embedding_shape=[n_features, embed_size])

    attention = tx.MHAttention(query=emb,
                               key=emb,
                               value=emb,
                               n_units=embed_size,
                               n_heads=n_heads,
                               causality=False,
                               attention_dropout=0.1,
                               regularized=False)

    assert len(attention.inputs) == 3

    # 3 "kernels" + bias
    assert len(attention.variables) == 3

    attention_reg = attention.reuse_with(emb, emb, emb, regularized=True)
    attention_2 = attention.reuse_with(emb, emb, emb, regularized=False)
    attention_causal = attention.reuse_with(emb, emb, emb, causality=True)

    attention_causal()

    result = attention()
    result_reg = attention_reg()
    result2 = attention_2()

    assert tx.same_shape(result, result_reg)
    assert tx.tensor_equal(result, result2)

    vars1 = map(lambda v: v.ref(), attention.variables)
    vars2 = map(lambda v: v.ref(), attention_2.variables)

    assert set(vars1) == set(vars2)
Esempio n. 14
0
def test_attention():
    n_features = 3
    embed_size = 8
    seq_size = 3
    batch_size = 2

    inputs = tx.Constant(np.random.random([batch_size, seq_size]),
                         n_units=seq_size,
                         dtype=tf.int32)
    emb = tx.Lookup(inputs,
                    seq_size=seq_size,
                    embedding_shape=[n_features, embed_size])
    seq = emb()

    # keras attention doesn't have multiple heads
    attention = Attention(use_scale=False)

    res = attention([seq, seq, seq])

    attention2 = tx.MHAttention(emb, emb, emb, n_units=embed_size, n_heads=1)
    assert len(attention2.variables) == 3

    attention2.wq = tx.Linear(emb,
                              n_units=None,
                              weights=tf.linalg.eye(embed_size, embed_size),
                              add_bias=False)
    attention2.wk = tx.Linear(emb,
                              n_units=None,
                              weights=tf.linalg.eye(embed_size, embed_size),
                              add_bias=False)
    attention2.wv = tx.Linear(emb,
                              n_units=None,
                              weights=tf.linalg.eye(embed_size, embed_size),
                              add_bias=False)

    assert tx.tensor_equal(attention2.wq(seq), seq)

    res2 = attention2()

    g = tx.Graph.build(inputs=emb, outputs=attention2)
    g = g.as_function(ord_inputs=emb, ord_outputs=attention2)

    res3 = g(seq)

    assert tx.tensor_equal(res, res2)
    assert tx.tensor_equal(res, res3)
Esempio n. 15
0
def test_to_sparse_gradient():
    target = tf.constant([[1., 0.], [1., 0.]])
    x = tx.Constant(tf.ones([1, 4], dtype=tf.float32), n_units=4)
    h = tx.Linear(x, n_units=2)
    y = tx.ToSparse(h)
    y = tx.ToDense(y)

    @tf.function
    def loss_fn(labels, prediction):
        return tf.reduce_mean(tf.pow(labels - prediction, 2))

    with tf.GradientTape() as tape:
        pred = y()
        loss = loss_fn(target, pred)

    gradients = tape.gradient(loss, h.trainable_variables)
    assert len(gradients) == 2
    assert tx.same_shape(gradients[0], h.weights)
    assert tx.same_shape(gradients[1], h.bias)
Esempio n. 16
0
def test_graph_as_function():
    data = [[1., 2.]]

    in1 = tx.Input(n_units=1, name="in1", dtype=tf.float32, constant=False)
    in2 = tx.Input(n_units=1, name="in1", dtype=tf.float32, constant=False)
    in3 = tx.Constant(tf.ones(shape=[1], dtype=tf.float32))
    in12 = tx.Add(in1, in2, in3)
    graph = tx.Graph.build(inputs=[in1, in2, in3], outputs=in12)

    fn = graph.as_function_v2(ord_inputs=[in1, in2, in3],
                              stateful_inputs=True,
                              compile=False,
                              fn_name="add")
    # fn = graph.as_function_v2(stateful_inputs=True, compile=False)

    # TODO I should make sure the function converts the inputs to tensors
    # to make sure I don't pass lists around
    assert fn(np.array([[1.]], dtype=np.float),
              np.array([[1.]], dtype=np.float)) == [[3]]
    assert fn() == [[3]]
    assert fn([[1.]], [[2.]]) == [[4]]
    assert fn() == [[4]]
    assert fn([[2.]]) == [[5]]
Esempio n. 17
0
def test_lookup_sparse_padding():
    """ Sparse Lookup Padding
    Lookup adds padding if seq_size is greater than the max row indice
    in the input SparseTensor

    """
    input_dim = 6
    embed_dim = 4
    seq_size = 3

    sparse_input = tf.SparseTensor(indices=[[0, 1], [0, 3], [1, 0]],
                                   values=[1, 1, 1],
                                   dense_shape=[2, input_dim])
    sparse_input = tx.Constant(sparse_input, input_dim)

    lookup = tx.Lookup(sparse_input,
                       seq_size=seq_size,
                       embedding_shape=[input_dim, embed_dim],
                       batch_size=None,
                       batch_padding=False)

    result = lookup()
    assert tf.sparse.to_dense(sparse_input()).shape == (2, input_dim)
    assert tx.tensor_equal(result[0][-1], tf.zeros([embed_dim]))
Esempio n. 18
0
def test_constant_shape():
    tensor = tf.ones([3, 3])
    const_layer = tx.Constant(tensor)

    assert const_layer.shape == tensor.shape
Esempio n. 19
0
def test_linear_function():
    inputs = tx.Constant(tf.ones([2, 4]), dtype=tf.float64)
    linear = tx.Linear(inputs, n_units=8, dtype=tf.float64)
    fn = tf.function(linear.__call__)
    assert tx.tensor_equal(fn(), linear())