Esempio n. 1
0
def _test_mnist_distributed(sagemaker_session, ecr_image, instance_type):
    model_dir = os.path.join(model_cpu_dir, 'model_mnist.tar.gz')

    endpoint_name = sagemaker.utils.unique_name_from_base(
        "sagemaker-pytorch-serving")

    model_data = sagemaker_session.upload_data(
        path=model_dir,
        key_prefix="sagemaker-pytorch-serving/models",
    )

    pytorch = PyTorchModel(model_data, 'SageMakerRole', mnist_script,
                           ecr_image, sagemaker_session)

    with timeout_and_delete_endpoint(endpoint_name,
                                     sagemaker_session,
                                     minutes=30):
        predictor = pytorch.deploy(initial_instance_count=1,
                                   instance_type=instance_type,
                                   endpoint_name=endpoint_name)

        batch_size = 100
        data = np.random.rand(batch_size, 1, 28, 28).astype(np.float32)
        output = predictor.predict(data)

        assert output.shape == (batch_size, 10)
def _test_mnist_distributed(sagemaker_session, ecr_image, instance_type, model_dir, mnist_script,
                            accelerator_type=None):
    endpoint_name = sagemaker.utils.unique_name_from_base("sagemaker-pytorch-serving")

    model_data = sagemaker_session.upload_data(
        path=model_dir,
        key_prefix="sagemaker-pytorch-serving/models",
    )

    pytorch = PyTorchModel(model_data=model_data, role='SageMakerRole', entry_point=mnist_script,
                           image=ecr_image, sagemaker_session=sagemaker_session)

    with timeout_and_delete_endpoint(endpoint_name, sagemaker_session, minutes=30):
        # Use accelerator type to differentiate EI vs. CPU and GPU. Don't use processor value
        if accelerator_type is not None:
            predictor = pytorch.deploy(initial_instance_count=1, instance_type=instance_type,
                                       accelerator_type=accelerator_type, endpoint_name=endpoint_name)
        else:
            predictor = pytorch.deploy(initial_instance_count=1, instance_type=instance_type,
                                       endpoint_name=endpoint_name)

        batch_size = 100
        data = np.random.rand(batch_size, 1, 28, 28).astype(np.float32)
        output = predictor.predict(data)

        assert output.shape == (batch_size, 10)
Esempio n. 3
0
def _test_mnist_distributed(sagemaker_session, ecr_image, instance_type,
                            dist_backend):
    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=mnist_script,
                          role='SageMakerRole',
                          train_instance_count=2,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=ecr_image,
                          hyperparameters={
                              'backend': dist_backend,
                              'epochs': 1
                          })
        training_input = pytorch.sagemaker_session.upload_data(
            path=training_dir, key_prefix='pytorch/mnist')
        pytorch.fit({'training': training_input})

    with timeout_and_delete_endpoint(estimator=pytorch, minutes=30):
        predictor = pytorch.deploy(initial_instance_count=1,
                                   instance_type=instance_type)

        batch_size = 100
        data = np.random.rand(batch_size, 1, 28, 28).astype(np.float32)
        output = predictor.predict(data)

        assert output.shape == (batch_size, 10)