def test_compactblocks_not_at_tip(self, node, test_node): # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for _ in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock, err_msg="test_compactblocks_not_at_tip test_node.received_block_announcement") test_node.clear_block_announcement() test_node.send_message(MsgGetdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock, err_msg="test_compactblocks_not_at_tip testnode.last_message") test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock, err_msg="test_compactblocks_not_at_tip test_node.received_block_announcement") test_node.clear_block_announcement() with mininode_lock: test_node.last_message.pop("block", None) test_node.send_message(MsgGetdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock, err_msg="test_node.received_block_announcement test_node.last_message") with mininode_lock: test_node.last_message["block"].block.calc_x16r() assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height-5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(MsgCmpctBlock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert found # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = MsgGetBlockTxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: assert "blocktxn" not in test_node.last_message
def run_test(self): gen_node = self.nodes[0] # The block and tx generating node gen_node.generate(1) # Setup the attacking p2p connection and start up the network thread. self.inbound_peer = TestNode() connections = [NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.inbound_peer)] self.inbound_peer.add_connection(connections[0]) NetworkThread().start() # Start up network handling in another thread max_repeats = 48 self.log.info("Running test up to {} times.".format(max_repeats)) for i in range(max_repeats): self.log.info('Run repeat {}'.format(i + 1)) txid = gen_node.sendtoaddress(gen_node.getnewaddress(), 0.01) want_tx = MsgGetdata() want_tx.inv.append(CInv(t=1, h=int(txid, 16))) self.inbound_peer.last_message.pop('notfound', None) connections[0].send_message(want_tx) self.inbound_peer.sync_with_ping() if self.inbound_peer.last_message.get('notfound'): self.log.debug('tx {} was not yet announced to us.'.format(txid)) self.log.debug("node has responded with a notfound message. End test.") assert_equal(self.inbound_peer.last_message['notfound'].vec[0].hash, int(txid, 16)) self.inbound_peer.last_message.pop('notfound') break else: self.log.debug('tx {} was already announced to us. Try test again.'.format(txid)) assert int(txid, 16) in [inv.hash for inv in self.inbound_peer.last_message['inv'].inv]
def test_compactblock_construction(self, node, test_node, version, use_witness_address): # Generate a bunch of transactions. node.generate(101) num_transactions = 25 address = node.getnewaddress() if use_witness_address: # Want at least one segwit spend, so move all funds to # a witness address. address = node.addwitnessaddress(address) value_to_send = node.getbalance() node.sendtoaddress(address, satoshi_round(value_to_send - Decimal(0.1))) node.generate(1) segwit_tx_generated = False for _ in range(num_transactions): txid = node.sendtoaddress(address, 0.1) hex_tx = node.gettransaction(txid)["hex"] tx = from_hex(CTransaction(), hex_tx) if not tx.wit.is_null(): segwit_tx_generated = True if use_witness_address: assert segwit_tx_generated # check that our test is not broken # Wait until we've seen the block announcement for the resulting tip tip = int(node.getbestblockhash(), 16) test_node.wait_for_block_announcement(tip) # Make sure we will receive a fast-announce compact block self.request_cb_announcements(test_node, node, version) # Now mine a block, and look at the resulting compact block. test_node.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) # Store the raw block in our internal format. block = from_hex(CBlock(), node.getblock("%02x" % block_hash, False)) for tx in block.vtx: tx.calc_x16r() block.rehash() # Wait until the block was announced (via compact blocks) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock, err_msg="test_node.received_block_announcement") # Now fetch and check the compact block with mininode_lock: assert ("cmpctblock" in test_node.last_message) # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs( test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block( version, header_and_shortids, block_hash, block) # Now fetch the compact block using a normal non-announce getdata with mininode_lock: test_node.clear_block_announcement() inv = CInv(4, block_hash) # 4 == "CompactBlock" test_node.send_message(MsgGetdata([inv])) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock, err_msg="test_node.received_block_announcement") # Now fetch and check the compact block with mininode_lock: assert ("cmpctblock" in test_node.last_message) # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs( test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block( version, header_and_shortids, block_hash, block)
def send_block_request(block_hash, node): msg = MsgGetdata() msg.inv.append(CInv(2, block_hash)) # 2 == "Block" node.send_message(msg)
def get_data(self, block_hashes): msg = MsgGetdata() for x in block_hashes: msg.inv.append(CInv(2, x)) self.connection.send_message(msg)
def run_test(self): """Main test logic""" # Create a P2P connection to one of the nodes node0 = BaseNode() connections = [ NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0) ] node0.add_connection(connections[0]) # Start up network handling in another thread. This needs to be called # after the P2P connections have been created. NetworkThread().start() # wait_for_verack ensures that the P2P connection is fully up. node0.wait_for_verack() # Generating a block on one of the nodes will get us out of IBD blocks = [int(self.nodes[0].generate(nblocks=1)[0], 16)] self.sync_all([self.nodes[0:1]]) # Notice above how we called an RPC by calling a method with the same # name on the node object. Notice also how we used a keyword argument # to specify a named RPC argument. Neither of those are defined on the # node object. Instead there's some __getattr__() magic going on under # the covers to dispatch unrecognised attribute calls to the RPC # interface. # Logs are nice. Do plenty of them. They can be used in place of comments for # breaking the test into sub-sections. self.log.info("Starting test!") self.log.info("Calling a custom function") custom_function() self.log.info("Calling a custom method") self.custom_method() self.log.info("Create some blocks") self.tip = int(self.nodes[0].getbestblockhash(), 16) self.block_time = self.nodes[0].getblock( self.nodes[0].getbestblockhash())['time'] + 1 self.nodes[0].generate(10) self.log.info( "Wait for node1 to reach current tip (height 11) using RPC") self.nodes[1].waitforblockheight(11) self.log.info("Connect node2 and node1") connect_nodes(self.nodes[1], 2) self.log.info("Add P2P connection to node2") node2 = BaseNode() connections.append( NodeConn('127.0.0.1', p2p_port(2), self.nodes[2], node2)) node2.add_connection(connections[1]) node2.wait_for_verack() self.log.info( "Wait for node2 reach current tip. Test that it has propagated all the blocks to us" ) getdata_request = MsgGetdata() for block in blocks: getdata_request.inv.append(CInv(2, block)) node2.send_message(getdata_request) self.sync_all([self.nodes[1:2]]) self.log.info("Check that each block was received only once") # The network thread uses a global lock on data access to the NodeConn objects when sending and receiving # messages. The test thread should acquire the global lock before accessing any NodeConn data to avoid locking # and synchronization issues. Note wait_until() acquires this global lock when testing the predicate. with mininode_lock: for block in node2.block_receive_map.values(): assert_equal(block, 1)
def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2 * 60 * 60 * 24 * 7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].generate(130) # test_nodes[0] will only request old blocks # test_nodes[1] will only request new blocks # test_nodes[2] will test resetting the counters test_nodes = [] connections = [] for i in range(3): test_nodes.append(TestNode()) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) test_nodes[i].add_connection(connections[i]) NetworkThread().start() # Start up network handling in another thread [x.wait_for_verack() for x in test_nodes] # Test logic begins here # Now mine a big block mine_large_block(self.nodes[0], self.utxo_cache) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2 * 60 * 60 * 24) # Mine one more block, so that the prior block looks old mine_large_block(self.nodes[0], self.utxo_cache) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() big_new_block = int(big_new_block, 16) # test_nodes[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = MsgGetdata() getdata_request.inv.append(CInv(2, big_old_block)) block_rate_minutes = 1 blocks_per_day = 24 * 60 / block_rate_minutes max_block_serialized_size = 8000000 # This is MAX_BLOCK_SERIALIZED_SIZE_RIP2 max_bytes_per_day = self.maxuploadtarget * 1024 * 1024 daily_buffer = blocks_per_day * max_block_serialized_size max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 224051200B will be reserved for relaying new blocks, so expect this to # succeed for ~236 tries. for i in range(int(success_count)): test_nodes[0].send_message(getdata_request) test_nodes[0].sync_with_ping() assert_equal(test_nodes[0].block_receive_map[big_old_block], i + 1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for i in range(3): test_nodes[0].send_message(getdata_request) test_nodes[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) self.log.info("Peer 0 disconnected after downloading old block too many times") # Requesting the current block on test_nodes[1] should succeed indefinitely, # even when over the max upload target. # We'll try lots of times getdata_request.inv = [CInv(2, big_new_block)] for i in range(500): test_nodes[1].send_message(getdata_request) test_nodes[1].sync_with_ping() assert_equal(test_nodes[1].block_receive_map[big_new_block], i + 1) self.log.info("Peer 1 able to repeatedly download new block") # But if test_nodes[1] tries for an old block, it gets disconnected too. getdata_request.inv = [CInv(2, big_old_block)] test_nodes[1].send_message(getdata_request) test_nodes[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) self.log.info("Peer 1 disconnected after trying to download old block") self.log.info("Advancing system time on node to clear counters...") # If we advance the time by 24 hours, then the counters should reset, # and test_nodes[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) test_nodes[2].sync_with_ping() test_nodes[2].send_message(getdata_request) test_nodes[2].sync_with_ping() assert_equal(test_nodes[2].block_receive_map[big_old_block], 1) self.log.info("Peer 2 able to download old block") [c.disconnect_node() for c in connections] # stop and start node 0 with 1MB maxuploadtarget, whitelist 127.0.0.1 self.log.info("Restarting nodes with -whitelist=127.0.0.1") self.stop_node(0) self.start_node(0, ["-whitelist=127.0.0.1", "-maxuploadtarget=1", "-blockmaxsize=999000"]) # recreate/reconnect a test node test_nodes = [TestNode()] connections = [NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[0])] test_nodes[0].add_connection(connections[0]) NetworkThread().start() # Start up network handling in another thread test_nodes[0].wait_for_verack() # retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(2, big_new_block)] for i in range(20): test_nodes[0].send_message(getdata_request) test_nodes[0].sync_with_ping() assert_equal(test_nodes[0].block_receive_map[big_new_block], i + 1) getdata_request.inv = [CInv(2, big_old_block)] test_nodes[0].send_and_ping(getdata_request) assert_equal(len(self.nodes[0].getpeerinfo()), 1) # node is still connected because of the whitelist self.log.info("Peer still connected after trying to download old block (whitelisted)")