Esempio n. 1
0
    def _test_getblockheader(self):
        node = self.nodes[0]

        assert_raises_jsonrpc(-5, "Block not found",
                              node.getblockheader, "nonsense")

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(199)
        header = node.getblockheader(besthash)

        assert_equal(header['hash'], besthash)
        assert_equal(header['height'], 200)
        assert_equal(header['confirmations'], 1)
        assert_equal(header['previousblockhash'], secondbesthash)
        assert_is_hex_string(header['chainwork'])
        assert_is_hash_string(header['hash'])
        assert_is_hash_string(header['previousblockhash'])
        assert_is_hash_string(header['merkleroot'])
        assert_is_hash_string(header['bits'], length=None)
        assert isinstance(header['time'], int)
        assert isinstance(header['mediantime'], int)
        assert isinstance(header['nonceUint32'], int)
        assert_is_hash_string(header['nonce'], length=None)
        assert isinstance(header['version'], int)
        assert isinstance(int(header['versionHex'], 16), int)
        assert isinstance(header['difficulty'], Decimal)
Esempio n. 2
0
    def _test_getblockheader(self):
        node = self.nodes[0]

        assert_raises_rpc_error(-8, "hash must be of length 64 (not 8, for 'nonsense')", node.getblockheader, "nonsense")
        assert_raises_rpc_error(-8, "hash must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", node.getblockheader, "ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")
        assert_raises_rpc_error(-5, "Block not found", node.getblockheader, "0cf7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(199)
        header = node.getblockheader(blockhash=besthash)

        assert_equal(header['hash'], besthash)
        assert_equal(header['height'], 200)
        assert_equal(header['confirmations'], 1)
        assert_equal(header['previousblockhash'], secondbesthash)
        assert_is_hex_string(header['chainwork'])
        assert_equal(header['nTx'], 1)
        assert_is_hash_string(header['hash'])
        assert_is_hash_string(header['previousblockhash'])
        assert_is_hash_string(header['merkleroot'])
        assert_is_hash_string(header['bits'], length=None)
        assert isinstance(header['time'], int)
        assert isinstance(header['mediantime'], int)
        assert isinstance(header['nonce'], int)
        assert isinstance(header['version'], int)
        assert isinstance(int(header['versionHex'], 16), int)
        assert isinstance(header['difficulty'], Decimal)
Esempio n. 3
0
    def _test_getblockheader(self):
        node = self.nodes[0]

        assert_raises(
            JSONRPCException, lambda: node.getblockheader('nonsense'))

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(COINBASE_MATURITY+100-1)
        header = node.getblockheader(besthash)

        assert_equal(header['hash'], besthash)
        assert_equal(header['height'], COINBASE_MATURITY+100)
        assert_equal(header['confirmations'], 1)
        assert_equal(header['previousblockhash'], secondbesthash)
        assert_is_hex_string(header['chainwork'])
        assert_is_hash_string(header['hash'])
        assert_is_hash_string(header['previousblockhash'])
        assert_is_hash_string(header['merkleroot'])
        assert_is_hash_string(header['bits'], length=None)
        assert isinstance(header['time'], int)
        assert isinstance(header['mediantime'], int)
        assert isinstance(header['nonce'], int)
        assert isinstance(header['version'], int)
        assert isinstance(int(header['versionHex'], 16), int)
        assert isinstance(header['difficulty'], Decimal)
Esempio n. 4
0
    def run_test(self):
        # Create two chains by disconnecting nodes 0 & 1, mining, then reconnecting
        disconnect_nodes(self.nodes[0], 1)

        self.nodes[0].generate(3)
        self.nodes[1].generate(4)

        assert_equal(self.nodes[0].getblockcount(), 3)
        chain0_hashes = [self.nodes[0].getblockhash(block_height) for block_height in range(4)]

        # Reorg node 0 to a new chain
        connect_nodes(self.nodes[0], 1)
        sync_blocks(self.nodes)

        assert_equal(self.nodes[0].getblockcount(), 4)
        chain1_hashes = [self.nodes[0].getblockhash(block_height) for block_height in range(4)]

        # Test getblockfilter returns a filter for all blocks and filter types on active chain
        for block_hash in chain1_hashes:
            for filter_type in FILTER_TYPES:
                result = self.nodes[0].getblockfilter(block_hash, filter_type)
                assert_is_hex_string(result['filter'])

        # Test getblockfilter returns a filter for all blocks and filter types on stale chain
        for block_hash in chain0_hashes:
            for filter_type in FILTER_TYPES:
                result = self.nodes[0].getblockfilter(block_hash, filter_type)
                assert_is_hex_string(result['filter'])

        # Test getblockfilter with unknown block
        bad_block_hash = "0123456789abcdef" * 4
        assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblockfilter, bad_block_hash, "basic")

        # Test getblockfilter with undefined filter type
        genesis_hash = self.nodes[0].getblockhash(0)
        assert_raises_rpc_error(-5, "Unknown filtertype", self.nodes[0].getblockfilter, genesis_hash, "unknown")
    def run_test(self):
        self.nodes[0].generatetoaddress(101, self.nodes[0].getnewaddress())
        self.dumb_sync_blocks()
        # # Sanity check the test framework:
        res = self.nodes[0].getblockchaininfo()
        assert_equal(res['blocks'], 101)
        node_master = self.nodes[0]
        v16_3_node = self.nodes[1]
        v15_2_node = self.nodes[2]

        # Send coins to old wallets for later conversion checks.
        v16_3_wallet = v16_3_node.get_wallet_rpc('wallet.dat')
        v16_3_address = v16_3_wallet.getnewaddress()
        node_master.generatetoaddress(101, v16_3_address)
        self.dumb_sync_blocks()
        v16_3_balance = v16_3_wallet.getbalance()

        self.log.info("Test upgradewallet RPC...")
        # Prepare for copying of the older wallet
        node_master_wallet_dir = os.path.join(node_master.datadir,
                                              "regtest/wallets",
                                              self.default_wallet_name)
        node_master_wallet = os.path.join(node_master_wallet_dir,
                                          self.default_wallet_name,
                                          self.wallet_data_filename)
        v16_3_wallet = os.path.join(v16_3_node.datadir,
                                    "regtest/wallets/wallet.dat")
        v15_2_wallet = os.path.join(v15_2_node.datadir, "regtest/wallet.dat")
        split_hd_wallet = os.path.join(v15_2_node.datadir, "regtest/splithd")
        self.stop_nodes()

        # Make split hd wallet
        self.start_node(2, ['-usehd=1', '-keypool=2', '-wallet=splithd'])
        self.stop_node(2)

        def copy_v16():
            node_master.get_wallet_rpc(self.default_wallet_name).unloadwallet()
            # Copy the 0.16.3 wallet to the last XUEZ Core version and open it:
            shutil.rmtree(node_master_wallet_dir)
            os.mkdir(node_master_wallet_dir)
            shutil.copy(v16_3_wallet, node_master_wallet_dir)
            node_master.loadwallet(self.default_wallet_name)

        def copy_non_hd():
            node_master.get_wallet_rpc(self.default_wallet_name).unloadwallet()
            # Copy the 0.15.2 non hd wallet to the last XUEZ Core version and open it:
            shutil.rmtree(node_master_wallet_dir)
            os.mkdir(node_master_wallet_dir)
            shutil.copy(v15_2_wallet, node_master_wallet_dir)
            node_master.loadwallet(self.default_wallet_name)

        def copy_split_hd():
            node_master.get_wallet_rpc(self.default_wallet_name).unloadwallet()
            # Copy the 0.15.2 split hd wallet to the last XUEZ Core version and open it:
            shutil.rmtree(node_master_wallet_dir)
            os.mkdir(node_master_wallet_dir)
            shutil.copy(split_hd_wallet,
                        os.path.join(node_master_wallet_dir, 'wallet.dat'))
            node_master.loadwallet(self.default_wallet_name)

        self.restart_node(0)
        copy_v16()
        wallet = node_master.get_wallet_rpc(self.default_wallet_name)
        self.log.info("Test upgradewallet without a version argument")
        self.test_upgradewallet(wallet,
                                previous_version=159900,
                                expected_version=169900)
        # wallet should still contain the same balance
        assert_equal(wallet.getbalance(), v16_3_balance)

        copy_non_hd()
        wallet = node_master.get_wallet_rpc(self.default_wallet_name)
        # should have no master key hash before conversion
        assert_equal('hdseedid' in wallet.getwalletinfo(), False)
        self.log.info("Test upgradewallet with explicit version number")
        self.test_upgradewallet(wallet,
                                previous_version=60000,
                                requested_version=169900)
        # after conversion master key hash should be present
        assert_is_hex_string(wallet.getwalletinfo()['hdseedid'])

        self.log.info("Intermediary versions don't effect anything")
        copy_non_hd()
        # Wallet starts with 60000
        assert_equal(60000, wallet.getwalletinfo()['walletversion'])
        wallet.unloadwallet()
        before_checksum = sha256sum_file(node_master_wallet)
        node_master.loadwallet('')
        # Test an "upgrade" from 60000 to 129999 has no effect, as the next version is 130000
        self.test_upgradewallet(wallet,
                                previous_version=60000,
                                requested_version=129999,
                                expected_version=60000)
        wallet.unloadwallet()
        assert_equal(before_checksum, sha256sum_file(node_master_wallet))
        node_master.loadwallet('')

        self.log.info('Wallets cannot be downgraded')
        copy_non_hd()
        self.test_upgradewallet_error(wallet,
                                      previous_version=60000,
                                      requested_version=40000,
                                      msg="Cannot downgrade wallet")
        wallet.unloadwallet()
        assert_equal(before_checksum, sha256sum_file(node_master_wallet))
        node_master.loadwallet('')

        self.log.info('Can upgrade to HD')
        # Inspect the old wallet and make sure there is no hdchain
        orig_kvs = dump_bdb_kv(node_master_wallet)
        assert b'\x07hdchain' not in orig_kvs
        # Upgrade to HD, no split
        self.test_upgradewallet(wallet,
                                previous_version=60000,
                                requested_version=130000)
        # Check that there is now a hd chain and it is version 1, no internal chain counter
        new_kvs = dump_bdb_kv(node_master_wallet)
        assert b'\x07hdchain' in new_kvs
        hd_chain = new_kvs[b'\x07hdchain']
        assert_equal(28, len(hd_chain))
        hd_chain_version, external_counter, seed_id = struct.unpack(
            '<iI20s', hd_chain)
        assert_equal(1, hd_chain_version)
        seed_id = bytearray(seed_id)
        seed_id.reverse()
        old_kvs = new_kvs
        # First 2 keys should still be non-HD
        for i in range(0, 2):
            info = wallet.getaddressinfo(wallet.getnewaddress())
            assert 'hdkeypath' not in info
            assert 'hdseedid' not in info
        # Next key should be HD
        info = wallet.getaddressinfo(wallet.getnewaddress())
        assert_equal(seed_id.hex(), info['hdseedid'])
        assert_equal('m/0\'/0\'/0\'', info['hdkeypath'])
        prev_seed_id = info['hdseedid']
        # Change key should be the same keypool
        info = wallet.getaddressinfo(wallet.getrawchangeaddress())
        assert_equal(prev_seed_id, info['hdseedid'])
        assert_equal('m/0\'/0\'/1\'', info['hdkeypath'])

        self.log.info('Cannot upgrade to HD Split, needs Pre Split Keypool')
        for version in [139900, 159900, 169899]:
            self.test_upgradewallet_error(
                wallet,
                previous_version=130000,
                requested_version=version,
                msg=
                "Cannot upgrade a non HD split wallet without upgrading to support pre split keypool. Please use version 169900 or no version specified."
            )

        self.log.info('Upgrade HD to HD chain split')
        self.test_upgradewallet(wallet,
                                previous_version=130000,
                                requested_version=169900)
        # Check that the hdchain updated correctly
        new_kvs = dump_bdb_kv(node_master_wallet)
        hd_chain = new_kvs[b'\x07hdchain']
        assert_equal(32, len(hd_chain))
        hd_chain_version, external_counter, seed_id, internal_counter = struct.unpack(
            '<iI20sI', hd_chain)
        assert_equal(2, hd_chain_version)
        assert_equal(0, internal_counter)
        seed_id = bytearray(seed_id)
        seed_id.reverse()
        assert_equal(seed_id.hex(), prev_seed_id)
        # Next change address is the same keypool
        info = wallet.getaddressinfo(wallet.getrawchangeaddress())
        assert_equal(prev_seed_id, info['hdseedid'])
        assert_equal('m/0\'/0\'/2\'', info['hdkeypath'])
        # Next change address is the new keypool
        info = wallet.getaddressinfo(wallet.getrawchangeaddress())
        assert_equal(prev_seed_id, info['hdseedid'])
        assert_equal('m/0\'/1\'/0\'', info['hdkeypath'])
        # External addresses use the same keypool
        info = wallet.getaddressinfo(wallet.getnewaddress())
        assert_equal(prev_seed_id, info['hdseedid'])
        assert_equal('m/0\'/0\'/3\'', info['hdkeypath'])

        self.log.info('Upgrade non-HD to HD chain split')
        copy_non_hd()
        self.test_upgradewallet(wallet,
                                previous_version=60000,
                                requested_version=169900)
        # Check that the hdchain updated correctly
        new_kvs = dump_bdb_kv(node_master_wallet)
        hd_chain = new_kvs[b'\x07hdchain']
        assert_equal(32, len(hd_chain))
        hd_chain_version, external_counter, seed_id, internal_counter = struct.unpack(
            '<iI20sI', hd_chain)
        assert_equal(2, hd_chain_version)
        assert_equal(2, internal_counter)
        # Drain the keypool by fetching one external key and one change key. Should still be the same keypool
        info = wallet.getaddressinfo(wallet.getnewaddress())
        assert 'hdseedid' not in info
        assert 'hdkeypath' not in info
        info = wallet.getaddressinfo(wallet.getrawchangeaddress())
        assert 'hdseedid' not in info
        assert 'hdkeypath' not in info
        # The next addresses are HD and should be on different HD chains
        info = wallet.getaddressinfo(wallet.getnewaddress())
        ext_id = info['hdseedid']
        assert_equal('m/0\'/0\'/0\'', info['hdkeypath'])
        info = wallet.getaddressinfo(wallet.getrawchangeaddress())
        assert_equal(ext_id, info['hdseedid'])
        assert_equal('m/0\'/1\'/0\'', info['hdkeypath'])

        self.log.info('KeyMetadata should upgrade when loading into master')
        copy_v16()
        old_kvs = dump_bdb_kv(v16_3_wallet)
        new_kvs = dump_bdb_kv(node_master_wallet)
        for k, old_v in old_kvs.items():
            if k.startswith(b'\x07keymeta'):
                new_ver, new_create_time, new_kp_str, new_seed_id, new_fpr, new_path_len, new_path, new_has_key_orig = deser_keymeta(
                    BytesIO(new_kvs[k]))
                old_ver, old_create_time, old_kp_str, old_seed_id, old_fpr, old_path_len, old_path, old_has_key_orig = deser_keymeta(
                    BytesIO(old_v))
                assert_equal(10, old_ver)
                if old_kp_str == b"":  # imported things that don't have keymeta (i.e. imported coinbase privkeys) won't be upgraded
                    assert_equal(new_kvs[k], old_v)
                    continue
                assert_equal(12, new_ver)
                assert_equal(new_create_time, old_create_time)
                assert_equal(new_kp_str, old_kp_str)
                assert_equal(new_seed_id, old_seed_id)
                assert_equal(0, old_path_len)
                assert_equal(new_path_len, len(new_path))
                assert_equal([], old_path)
                assert_equal(False, old_has_key_orig)
                assert_equal(True, new_has_key_orig)

                # Check that the path is right
                built_path = []
                for s in new_kp_str.decode().split('/')[1:]:
                    h = 0
                    if s[-1] == '\'':
                        s = s[:-1]
                        h = 0x80000000
                    p = int(s) | h
                    built_path.append(p)
                assert_equal(new_path, built_path)

        self.log.info(
            'Upgrading to NO_DEFAULT_KEY should not remove the defaultkey')
        copy_split_hd()
        # Check the wallet has a default key initially
        old_kvs = dump_bdb_kv(node_master_wallet)
        defaultkey = old_kvs[b'\x0adefaultkey']
        self.log.info(
            "Upgrade the wallet. Should still have the same default key.")
        self.test_upgradewallet(wallet,
                                previous_version=139900,
                                requested_version=159900)
        new_kvs = dump_bdb_kv(node_master_wallet)
        up_defaultkey = new_kvs[b'\x0adefaultkey']
        assert_equal(defaultkey, up_defaultkey)
        # 0.16.3 doesn't have a default key
        v16_3_kvs = dump_bdb_kv(v16_3_wallet)
        assert b'\x0adefaultkey' not in v16_3_kvs
    def run_test(self):
        self.nodes[0].generate(161)  # block 161

        self.log.info(
            "Verify sigops are counted in GBT with pre-BIP141 rules before the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl['sizelimit'] == 1000000
        assert 'weightlimit' not in tmpl
        assert tmpl['sigoplimit'] == 20000
        assert tmpl['transactions'][0]['hash'] == txid
        assert tmpl['transactions'][0]['sigops'] == 2
        assert '!segwit' not in tmpl['rules']
        self.nodes[0].generate(1)  # block 162

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = [
        ]  # p2sh_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE embedded in p2sh
        wit_ids = [
        ]  # wit_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(
                self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([
                OP_1,
                hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG
            ])
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'bech32')['address']
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for _ in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for _ in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], False,
                                        Decimal("49.999")))
                    p2sh_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], True,
                                        Decimal("49.999")))

        self.nodes[0].generate(1)  # block 163
        self.sync_blocks()

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance(),
                     balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 20 * Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance(), 20 * Decimal("49.999"))

        self.nodes[0].generate(260)  # block 423
        self.sync_blocks()

        self.log.info(
            "Verify witness txs are skipped for mining before the fork")
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WPKH][0],
                       True)  # block 424
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WSH][0],
                       True)  # block 425
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WPKH][0],
                       True)  # block 426
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WSH][0],
                       True)  # block 427

        self.log.info(
            "Verify unsigned p2sh witness txs without a redeem script are invalid"
        )
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WPKH][1],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WSH][1],
            sign=False)

        self.nodes[2].generate(4)  # blocks 428-431

        self.log.info(
            "Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        blockhash = self.nodes[2].generate(1)[
            0]  # block 432 (first block with new rules; 432 = 144 * 3)
        self.sync_blocks()
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info(
            "Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            wit_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            wit_ids[NODE_0][P2WSH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False)
        # unsigned with redeem script
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[0]))
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[0]))

        self.log.info(
            "Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag"
        )
        assert self.nodes[2].getblock(
            blockhash, False) != self.nodes[0].getblock(blockhash, False)
        assert self.nodes[1].getblock(blockhash,
                                      False) == self.nodes[2].getblock(
                                          blockhash, False)

        for tx_id in segwit_tx_list:
            tx = FromHex(CTransaction(),
                         self.nodes[2].gettransaction(tx_id)["hex"])
            assert self.nodes[2].getrawtransaction(
                tx_id, False, blockhash) != self.nodes[0].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[1].getrawtransaction(
                tx_id, False, blockhash) == self.nodes[2].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) != self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[1].getrawtransaction(
                tx_id, False,
                blockhash) == self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) == tx.serialize_without_witness().hex()

        # Coinbase contains the witness commitment nonce, check that RPC shows us
        coinbase_txid = self.nodes[2].getblock(blockhash)['tx'][0]
        coinbase_tx = self.nodes[2].gettransaction(txid=coinbase_txid,
                                                   verbose=True)
        witnesses = coinbase_tx["decoded"]["vin"][0]["txinwitness"]
        assert_equal(len(witnesses), 1)
        assert_is_hex_string(witnesses[0])
        assert_equal(witnesses[0], '00' * 32)

        self.log.info(
            "Verify witness txs without witness data are invalid after the fork"
        )
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            wit_ids[NODE_2][P2WPKH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            wit_ids[NODE_2][P2WSH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            p2sh_ids[NODE_2][P2WPKH][2],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            p2sh_ids[NODE_2][P2WSH][2],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WPKH][0],
                          True)  # block 432
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WSH][0],
                          True)  # block 433
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WPKH][0],
                          True)  # block 434
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WSH][0],
                          True)  # block 435

        self.log.info(
            "Verify sigops are counted in GBT with BIP141 rules after the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl[
            'sizelimit'] >= 3999577  # actual maximum size is lower due to minimum mandatory non-witness data
        assert tmpl['weightlimit'] == 4000000
        assert tmpl['sigoplimit'] == 80000
        assert tmpl['transactions'][0]['txid'] == txid
        assert tmpl['transactions'][0]['sigops'] == 8
        assert '!segwit' in tmpl['rules']

        self.nodes[0].generate(1)  # Mine a block to clear the gbt cache

        self.log.info(
            "Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0],
                                find_spendable_utxo(self.nodes[0], 50),
                                self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert tx.wit.is_null()  # This should not be a segwit input
        assert txid1 in self.nodes[0].getrawmempool()

        tx1_hex = self.nodes[0].gettransaction(txid1)['hex']
        tx1 = FromHex(CTransaction(), tx1_hex)

        # Check that wtxid is properly reported in mempool entry (txid1)
        assert_equal(int(self.nodes[0].getmempoolentry(txid1)["wtxid"], 16),
                     tx1.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid1)
        assert_equal(self.nodes[0].getmempoolentry(txid1)["vsize"],
                     (self.nodes[0].getmempoolentry(txid1)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid1)["weight"],
            len(tx1.serialize_without_witness()) * 3 +
            len(tx1.serialize_with_witness()))

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(
            CTxOut(int(49.99 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert not tx.wit.is_null()

        # Check that wtxid is properly reported in mempool entry (txid2)
        assert_equal(int(self.nodes[0].getmempoolentry(txid2)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid2)
        assert_equal(self.nodes[0].getmempoolentry(txid2)["vsize"],
                     (self.nodes[0].getmempoolentry(txid2)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid2)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(
            CTxOut(int(49.95 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(hexstring=ToHex(tx),
                                                 maxfeerate=0)
        assert tx.wit.is_null()
        assert txid3 in self.nodes[0].getrawmempool()

        # Check that getblocktemplate includes all transactions.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert txid1 in template_txids
        assert txid2 in template_txids
        assert txid3 in template_txids

        # Check that wtxid is properly reported in mempool entry (txid3)
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid3)
        assert_equal(self.nodes[0].getmempoolentry(txid3)["vsize"],
                     (self.nodes[0].getmempoolentry(txid3)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid3)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1)

        self.log.info("Verify behaviour of importaddress and listunspent")

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn")
        uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"]
        self.nodes[0].importprivkey(
            "cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR")
        compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"]
        assert not self.nodes[0].getaddressinfo(
            uncompressed_spendable_address[0])['iscompressed']
        assert self.nodes[0].getaddressinfo(
            compressed_spendable_address[0])['iscompressed']

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = [
        ]  # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = [
        ]  # These outputs should be seen after importaddress
        solvable_after_importaddress = [
        ]  # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = [
        ]  # These outputs should be unsolvable after importaddress
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                compressed_spendable_address[0],
                uncompressed_solvable_address[0]
            ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], compressed_solvable_address[1]
             ])['address'])

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(
            2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([
            OP_2,
            hex_str_to_bytes(pubkeys[3]),
            hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG
        ])
        solvable_after_importaddress.append(
            CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])
                # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend(
                    [bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
        unsolvable_address_key = hex_str_to_bytes(
            "02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D"
        )
        unsolvablep2pkh = CScript([
            OP_DUP, OP_HASH160,
            hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG
        ])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(
            op1)  # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(
            op0
        )  # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(
            self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(
            spendable_after_importaddress + solvable_after_importaddress +
            unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bare.hex())
                importlist.append(CScript([OP_0, sha256(bare)]).hex())
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([
                    OP_DUP, OP_HASH160,
                    hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG
                ])
                importlist.append(p2pk.hex())
                importlist.append(p2pkh.hex())
                importlist.append(CScript([OP_0, hash160(pubkey)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pk)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pkh)]).hex())

        importlist.append(unsolvablep2pkh.hex())
        importlist.append(unsolvablep2wshp2pkh.hex())
        importlist.append(op1.hex())
        importlist.append(p2wshop1.hex())

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(
                -4,
                "The wallet already contains the private key for this address or script",
                self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(
            script_to_p2sh(op0))  # import OP_0 as address only
        self.nodes[0].importaddress(
            multisig_without_privkey_address)  # Test multisig_without_privkey

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH")
        uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"]
        self.nodes[0].importprivkey(
            "cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw")
        compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        unseen_anytime = []  # These outputs should never be seen
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], uncompressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        v1_addr = program_to_witness(1, [3, 5])
        v1_tx = self.nodes[0].createrawtransaction(
            [getutxo(spendable_txid[0])], {v1_addr: 1})
        v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0],
                     v1_addr)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey(
            "cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
        self.nodes[0].importprivkey(
            "cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
        self.nodes[0].importprivkey(
            "91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
        self.nodes[0].importprivkey(
            "cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
        self.nodes[0].importprivkey(
            "cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
        self.nodes[0].importprivkey(
            "cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts works
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
            rawtxfund = self.nodes[1].signrawtransactionwithwallet(
                rawtxfund)["hex"]
            txid = self.nodes[1].sendrawtransaction(rawtxfund)

            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)

            # Assert it is properly saved
            self.restart_node(1)
            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)
Esempio n. 7
0
    def run_test(self):
        self.nodes[0].generatetoaddress(101, self.nodes[0].getnewaddress())
        self.dumb_sync_blocks()
        # # Sanity check the test framework:
        res = self.nodes[0].getblockchaininfo()
        assert_equal(res['blocks'], 101)
        node_master = self.nodes[0]
        v16_3_node  = self.nodes[1]
        v15_2_node  = self.nodes[2]

        # Send coins to old wallets for later conversion checks.
        v16_3_wallet  = v16_3_node.get_wallet_rpc('wallet.dat')
        v16_3_address = v16_3_wallet.getnewaddress()
        node_master.generatetoaddress(101, v16_3_address)
        self.dumb_sync_blocks()
        v16_3_balance = v16_3_wallet.getbalance()

        self.log.info("Test upgradewallet RPC...")
        # Prepare for copying of the older wallet
        node_master_wallet_dir = os.path.join(node_master.datadir, "regtest/wallets")
        v16_3_wallet       = os.path.join(v16_3_node.datadir, "regtest/wallets/wallet.dat")
        v15_2_wallet       = os.path.join(v15_2_node.datadir, "regtest/wallet.dat")
        self.stop_nodes()

        # Copy the 0.16.3 wallet to the last Pexa Core version and open it:
        shutil.rmtree(node_master_wallet_dir)
        os.mkdir(node_master_wallet_dir)
        shutil.copy(
            v16_3_wallet,
            node_master_wallet_dir
        )
        self.restart_node(0, ['-nowallet'])
        node_master.loadwallet('')

        wallet = node_master.get_wallet_rpc('')
        old_version = wallet.getwalletinfo()["walletversion"]

        # calling upgradewallet without version arguments
        # should return nothing if successful
        assert_equal(wallet.upgradewallet(), "")
        new_version = wallet.getwalletinfo()["walletversion"]
        # upgraded wallet version should be greater than older one
        assert_greater_than(new_version, old_version)
        # wallet should still contain the same balance
        assert_equal(wallet.getbalance(), v16_3_balance)

        self.stop_node(0)
        # Copy the 0.15.2 wallet to the last Pexa Core version and open it:
        shutil.rmtree(node_master_wallet_dir)
        os.mkdir(node_master_wallet_dir)
        shutil.copy(
            v15_2_wallet,
            node_master_wallet_dir
        )
        self.restart_node(0, ['-nowallet'])
        node_master.loadwallet('')

        wallet = node_master.get_wallet_rpc('')
        # should have no master key hash before conversion
        assert_equal('hdseedid' in wallet.getwalletinfo(), False)
        # calling upgradewallet with explicit version number
        # should return nothing if successful
        assert_equal(wallet.upgradewallet(169900), "")
        new_version = wallet.getwalletinfo()["walletversion"]
        # upgraded wallet should have version 169900
        assert_equal(new_version, 169900)
        # after conversion master key hash should be present
        assert_is_hex_string(wallet.getwalletinfo()['hdseedid'])
Esempio n. 8
0
 def get_code(self, address: str, epoch: str) -> str:
     assert_is_hash_string(address, length=40)
     code = self.node.cfx_getCode(address, epoch)
     assert_is_hex_string(code)
     return code
Esempio n. 9
0
    def _test_getblockheader(self):
        node = self.nodes[0]

        assert_raises_rpc_error(
            -8, "hash_or_height must be of length 64 (not 8, for 'nonsense')",
            node.getblockheader, "nonsense")
        assert_raises_rpc_error(
            -8,
            "hash_or_height must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')",
            node.getblockheader,
            "ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")
        assert_raises_rpc_error(
            -5, "Block not found", node.getblockheader,
            "0cf7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")
        assert_raises_rpc_error(
            -8, "Target block height 201 after current tip 200",
            node.getblockheader, 201)
        assert_raises_rpc_error(-8, "Target block height -10 is negative",
                                node.getblockheader, -10)

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(199)
        header = node.getblockheader(hash_or_height=besthash)

        assert_equal(header['hash'], besthash)
        assert_equal(header['height'], 200)
        assert_equal(header['confirmations'], 1)
        assert_equal(header['previousblockhash'], secondbesthash)
        assert_is_hex_string(header['chainwork'])
        assert_equal(header['nTx'], 1)
        assert_is_hash_string(header['hash'])
        assert_is_hash_string(header['previousblockhash'])
        assert_is_hash_string(header['merkleroot'])
        assert_is_hash_string(header['bits'], length=None)
        assert isinstance(header['time'], int)
        assert isinstance(header['mediantime'], int)
        assert isinstance(header['nonce'], int)
        assert isinstance(header['version'], int)
        assert isinstance(int(header['versionHex'], 16), int)
        assert isinstance(header['difficulty'], Decimal)

        header_by_height = node.getblockheader(hash_or_height=200)
        assert_equal(header, header_by_height)

        # Next, check that the old alias 'blockhash' still works
        # and is interchangeable with hash_or_height
        # First, make sure errors work as expected for unknown named params
        self.log.info(
            "Testing that getblockheader(blockhashhh=\"HEX\") produces the proper error"
        )
        assert_raises_rpc_error(-8,
                                "Unknown named parameter blockhashhh",
                                node.getblockheader,
                                blockhashhh=header['hash'])
        # Next, actually try the old legacy blockhash="xx" style arg
        self.log.info(
            "Testing that legacy getblockheader(blockhash=\"HEX\") still works ok"
        )
        header_by_hash2 = node.getblockheader(blockhash=header['hash'])
        assert_equal(header, header_by_hash2)
        header_by_height2 = node.getblockheader(blockhash=200)
        assert_equal(header, header_by_height2)

        # check that we actually get a hex string back from getblockheader
        # if verbose is set to false.
        header_verbose_false = node.getblockheader(200, False)
        assert not isinstance(header_verbose_false, dict)
        assert isinstance(header_verbose_false, str)
        assert (c in string.hexdigits for c in header_verbose_false)
        assert_is_hex_string(header_verbose_false)

        # check that header_verbose_false is the same header we get via
        # getblockheader(hash_or_height=besthash) just in a different "form"
        h = CBlockHeader()
        h.deserialize(BytesIO(hex_str_to_bytes(header_verbose_false)))
        h.calc_sha256()

        assert_equal(header['version'], h.nVersion)
        assert_equal(header['time'], h.nTime)
        assert_equal(header['previousblockhash'],
                     "{:064x}".format(h.hashPrevBlock))
        assert_equal(header['merkleroot'], "{:064x}".format(h.hashMerkleRoot))
        assert_equal(header['hash'], h.hash)

        # check that we get the same header by hash and by height in
        # the case verbose is set to False
        header_verbose_false_by_hash = node.getblockheader(besthash, False)
        assert_equal(header_verbose_false_by_hash, header_verbose_false)
Esempio n. 10
0
    def run_test(self):
        self.nodes[0].generate(161)  # block 161

        self.log.info(
            "Verify sigops are counted in GBT with pre-BIP141 rules before the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl['sizelimit'] == 100000
        assert 'weightlimit' not in tmpl
        assert tmpl['sigoplimit'] == 2000
        assert tmpl['transactions'][0]['hash'] == txid
        assert tmpl['transactions'][0]['sigops'] == 2
        assert '!segwit' not in tmpl['rules']
        self.nodes[0].generate(1)  # block 162

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = [
        ]  # p2sh_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE embedded in p2sh
        wit_ids = [
        ]  # wit_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(
                self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([
                OP_1,
                hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG
            ])
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'bech32')['address']
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for _ in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for _ in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], False,
                                        Decimal("49.999")))
                    p2sh_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], True,
                                        Decimal("49.999")))

        self.nodes[0].generate(1)  # block 163
        self.sync_blocks()

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance(),
                     balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 20 * Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance(), 20 * Decimal("49.999"))

        self.nodes[0].generate(260)  # block 423
        self.sync_blocks()

        self.log.info(
            "Verify witness txs are skipped for mining before the fork")
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WPKH][0],
                       True)  # block 424
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WSH][0],
                       True)  # block 425
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WPKH][0],
                       True)  # block 426
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WSH][0],
                       True)  # block 427

        self.log.info(
            "Verify unsigned p2sh witness txs without a redeem script are invalid"
        )
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WPKH][1],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WSH][1],
            sign=False)

        self.nodes[2].generate(4)  # blocks 428-431

        self.log.info(
            "Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        blockhash = self.nodes[2].generate(1)[
            0]  # block 432 (first block with new rules; 432 = 144 * 3)
        self.sync_blocks()
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info(
            "Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            wit_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            wit_ids[NODE_0][P2WSH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False)
        # unsigned with redeem script
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[0]))
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[0]))

        self.log.info(
            "Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag"
        )
        assert self.nodes[2].getblock(
            blockhash, False) != self.nodes[0].getblock(blockhash, False)
        assert self.nodes[1].getblock(blockhash,
                                      False) == self.nodes[2].getblock(
                                          blockhash, False)

        for tx_id in segwit_tx_list:
            tx = FromHex(CTransaction(),
                         self.nodes[2].gettransaction(tx_id)["hex"])
            assert self.nodes[2].getrawtransaction(
                tx_id, False, blockhash) != self.nodes[0].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[1].getrawtransaction(
                tx_id, False, blockhash) == self.nodes[2].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) != self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[1].getrawtransaction(
                tx_id, False,
                blockhash) == self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) == tx.serialize_without_witness().hex()

        # Coinbase contains the witness commitment nonce, check that RPC shows us
        coinbase_txid = self.nodes[2].getblock(blockhash)['tx'][0]
        coinbase_tx = self.nodes[2].gettransaction(txid=coinbase_txid,
                                                   verbose=True)
        witnesses = coinbase_tx["decoded"]["vin"][0]["txinwitness"]
        assert_equal(len(witnesses), 1)
        assert_is_hex_string(witnesses[0])
        assert_equal(witnesses[0], '00' * 32)

        self.log.info(
            "Verify witness txs without witness data are invalid after the fork"
        )
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            wit_ids[NODE_2][P2WPKH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            wit_ids[NODE_2][P2WSH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            p2sh_ids[NODE_2][P2WPKH][2],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            p2sh_ids[NODE_2][P2WSH][2],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WPKH][0],
                          True)  # block 432
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WSH][0],
                          True)  # block 433
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WPKH][0],
                          True)  # block 434
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WSH][0],
                          True)  # block 435

        self.log.info(
            "Verify sigops are counted in GBT with BIP141 rules after the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl[
            'sizelimit'] >= 390000  # actual maximum size is lower due to minimum mandatory non-witness data
        assert tmpl['weightlimit'] == 400000
        assert tmpl['sigoplimit'] == 8000
        assert tmpl['transactions'][0]['txid'] == txid
        assert tmpl['transactions'][0]['sigops'] == 8
        assert '!segwit' in tmpl['rules']

        self.nodes[0].generate(1)  # Mine a block to clear the gbt cache

        self.log.info(
            "Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0],
                                find_spendable_utxo(self.nodes[0], 50),
                                self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert tx.wit.is_null()  # This should not be a segwit input
        assert txid1 in self.nodes[0].getrawmempool()

        tx1_hex = self.nodes[0].gettransaction(txid1)['hex']
        tx1 = FromHex(CTransaction(), tx1_hex)

        # Check that wtxid is properly reported in mempool entry (txid1)
        assert_equal(int(self.nodes[0].getmempoolentry(txid1)["wtxid"], 16),
                     tx1.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid1)
        assert_equal(self.nodes[0].getmempoolentry(txid1)["vsize"],
                     (self.nodes[0].getmempoolentry(txid1)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid1)["weight"],
            len(tx1.serialize_without_witness()) * 3 +
            len(tx1.serialize_with_witness()))

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(
            CTxOut(int(49.99 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert not tx.wit.is_null()

        # Check that wtxid is properly reported in mempool entry (txid2)
        assert_equal(int(self.nodes[0].getmempoolentry(txid2)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid2)
        assert_equal(self.nodes[0].getmempoolentry(txid2)["vsize"],
                     (self.nodes[0].getmempoolentry(txid2)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid2)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(
            CTxOut(int(49.95 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(hexstring=ToHex(tx),
                                                 maxfeerate=0)
        assert tx.wit.is_null()
        assert txid3 in self.nodes[0].getrawmempool()

        # Check that getblocktemplate includes all transactions.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert txid1 in template_txids
        assert txid2 in template_txids
        assert txid3 in template_txids

        # Check that wtxid is properly reported in mempool entry (txid3)
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid3)
        assert_equal(self.nodes[0].getmempoolentry(txid3)["vsize"],
                     (self.nodes[0].getmempoolentry(txid3)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid3)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1)

        self.log.info("Verify behaviour of importaddress and listunspent")

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # b4Vfz2Ly8GAubXRrhpSGF9ctmorBYVzdokEQcDrbV2EmnzB5LonH
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # b4bVUqL7X7ZJpqzDnF6Ks32YM9GXbVdrEbmznQMRXcTixRM1AbGA
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 8iW8cP2tV3YUkc8XrPz3v7CvFjV5VkhpzgKos82q1LWshZEooJo
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # b4BabAFLEnDwVU4FB2SosQPc42WvquuCqaa1rE34tV8rmhbQbjQv
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # b54DUJnyPL6VQMoCd4sXtvCBvhM1vG2vSCwqShSRE8ryS7Cuu9H1
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # b8HQcxqFUhg4BsdjE21bisYRkwT4jvKhTUmcYh5ege5SQbLsmrAz
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "8j9PwFko4f5TjUAyE9ssZAQSNmbCHXdV6sBwuh2ouxyeg41E8Vu")
        uncompressed_spendable_address = ["cg37jZdKe7YsxJMUVZNKD36EuaDpPdbZqe"]
        self.nodes[0].importprivkey(
            "b2yTVwqY6fX1PqXUEqWbUCYAaUo4YFQc8nRZavfUt9Ki77ewQaDr")
        compressed_spendable_address = ["cWjYG6zbUdBfsULfCHD8xQF928QYxcy4ZZ"]
        assert not self.nodes[0].getaddressinfo(
            uncompressed_spendable_address[0])['iscompressed']
        assert self.nodes[0].getaddressinfo(
            compressed_spendable_address[0])['iscompressed']

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = [
        ]  # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = [
        ]  # These outputs should be seen after importaddress
        solvable_after_importaddress = [
        ]  # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = [
        ]  # These outputs should be unsolvable after importaddress
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                compressed_spendable_address[0],
                uncompressed_solvable_address[0]
            ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], compressed_solvable_address[1]
             ])['address'])

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(
            2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([
            OP_2,
            hex_str_to_bytes(pubkeys[3]),
            hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG
        ])
        solvable_after_importaddress.append(
            CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])
                # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend(
                    [bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # dTXLAVZMSwCLfWDF4us6U6F1FWbyWyBYwK is the P2SH(P2PKH) version of cV2MQNbEFyXpjGihDYNqf4s1RQGbS94jVC
        unsolvable_address_key = hex_str_to_bytes(
            "02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D"
        )
        unsolvablep2pkh = CScript([
            OP_DUP, OP_HASH160,
            hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG
        ])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(
            op1)  # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(
            op0
        )  # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(
            self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(
            spendable_after_importaddress + solvable_after_importaddress +
            unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bare.hex())
                importlist.append(CScript([OP_0, sha256(bare)]).hex())
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([
                    OP_DUP, OP_HASH160,
                    hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG
                ])
                importlist.append(p2pk.hex())
                importlist.append(p2pkh.hex())
                importlist.append(CScript([OP_0, hash160(pubkey)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pk)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pkh)]).hex())

        importlist.append(unsolvablep2pkh.hex())
        importlist.append(unsolvablep2wshp2pkh.hex())
        importlist.append(op1.hex())
        importlist.append(p2wshop1.hex())

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(
                -4,
                "The wallet already contains the private key for this address or script",
                self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(
            script_to_p2sh(op0))  # import OP_0 as address only
        self.nodes[0].importaddress(
            multisig_without_privkey_address)  # Test multisig_without_privkey

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "8id8M1PDTjZimEZBfxp2iYgp9xFZ865PHcVqdksDhja21H3kuZC")
        uncompressed_spendable_address = ["cS8VPRWos5pYHt6ay9WAnenT6LeDpfdtVP"]
        self.nodes[0].importprivkey(
            "b2QBP8LNcftKZAW4zx7DdZYa3FvxMmuAAuCvkgmKcvEptAiiFsvU")
        compressed_spendable_address = ["ckhW8KuyAKe1AvKYy5FXcP8JZrWA9n6u3g"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        unseen_anytime = []  # These outputs should never be seen
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], uncompressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        v1_addr = program_to_witness(1, [3, 5])
        v1_tx = self.nodes[0].createrawtransaction(
            [getutxo(spendable_txid[0])], {v1_addr: 1})
        v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0],
                     v1_addr)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey(
            "b4Vfz2Ly8GAubXRrhpSGF9ctmorBYVzdokEQcDrbV2EmnzB5LonH")
        self.nodes[0].importprivkey(
            "b4bVUqL7X7ZJpqzDnF6Ks32YM9GXbVdrEbmznQMRXcTixRM1AbGA")
        self.nodes[0].importprivkey(
            "8iW8cP2tV3YUkc8XrPz3v7CvFjV5VkhpzgKos82q1LWshZEooJo")
        self.nodes[0].importprivkey(
            "b4BabAFLEnDwVU4FB2SosQPc42WvquuCqaa1rE34tV8rmhbQbjQv")
        self.nodes[0].importprivkey(
            "b54DUJnyPL6VQMoCd4sXtvCBvhM1vG2vSCwqShSRE8ryS7Cuu9H1")
        self.nodes[0].importprivkey(
            "b8HQcxqFUhg4BsdjE21bisYRkwT4jvKhTUmcYh5ege5SQbLsmrAz")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts works
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
            rawtxfund = self.nodes[1].signrawtransactionwithwallet(
                rawtxfund)["hex"]
            txid = self.nodes[1].sendrawtransaction(rawtxfund)

            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)

            # Assert it is properly saved
            self.restart_node(1)
            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)
    def _test_getblockheader(self):
        node = self.nodes[0]

        assert_raises_rpc_error(
            -8, "hash_or_height must be of length 64 (not 8, for 'nonsense')",
            node.getblockheader, "nonsense")
        assert_raises_rpc_error(
            -8,
            "hash_or_height must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')",
            node.getblockheader,
            "ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")
        assert_raises_rpc_error(
            -5, "Block not found", node.getblockheader,
            "0cf7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844")
        assert_raises_rpc_error(
            -8, "Target block height 201 after current tip 200",
            node.getblockheader, 201)
        assert_raises_rpc_error(-8, "Target block height -10 is negative",
                                node.getblockheader, -10)

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(199)
        header = node.getblockheader(hash_or_height=besthash)

        assert_equal(header['hash'], besthash)
        assert_equal(header['height'], 200)
        assert_equal(header['confirmations'], 1)
        assert_equal(header['previousblockhash'], secondbesthash)
        assert_is_hex_string(header['chainwork'])
        assert_equal(header['nTx'], 1)
        assert_is_hash_string(header['hash'])
        assert_is_hash_string(header['previousblockhash'])
        assert_is_hash_string(header['merkleroot'])
        assert_is_hash_string(header['bits'], length=None)
        assert isinstance(header['time'], int)
        assert isinstance(header['mediantime'], int)
        assert isinstance(header['nonce'], int)
        assert isinstance(header['version'], int)
        assert isinstance(int(header['versionHex'], 16), int)
        assert isinstance(header['difficulty'], Decimal)

        header_by_height = node.getblockheader(hash_or_height=200)
        assert_equal(header, header_by_height)

        # check that we actually get a hex string back from getblockheader
        # if verbose is set to false.
        header_verbose_false = node.getblockheader(200, False)
        assert not isinstance(header_verbose_false, dict)
        assert isinstance(header_verbose_false, str)
        assert (c in string.hexdigits for c in header_verbose_false)
        assert_is_hex_string(header_verbose_false)

        # check that header_verbose_false is the same header we get via
        # getblockheader(hash_or_height=besthash) just in a different "form"
        h = CBlockHeader()
        h.deserialize(BytesIO(hex_str_to_bytes(header_verbose_false)))
        h.calc_sha256()

        assert_equal(header['version'], h.nVersion)
        assert_equal(header['time'], h.nTime)
        assert_equal(header['previousblockhash'],
                     "{:064x}".format(h.hashPrevBlock))
        assert_equal(header['merkleroot'], "{:064x}".format(h.hashMerkleRoot))
        assert_equal(header['hash'], h.hash)

        # check that we get the same header by hash and by height in
        # the case verbose is set to False
        header_verbose_false_by_hash = node.getblockheader(besthash, False)
        assert_equal(header_verbose_false_by_hash, header_verbose_false)
Esempio n. 12
0
    def _test_getblockbyheight(self):
        node = self.nodes[0]
        assert_raises_rpc_error(-5, "Block not found", node.getblockheader,
                                "nonsense")

        besthash = node.getbestblockhash()
        secondbesthash = node.getblockhash(199)

        self.log.info("Test getblockbyheight with verbosity=0")
        blockhex = node.getblockbyheight(1, 0)
        assert_is_hex_string(blockhex)
        self.log.info("Test getblockbyheight with verbosity=RAW_BLOCK")
        blockhex = node.getblockbyheight(1, "RAW_BLOCK")
        assert_is_hex_string(blockhex)
        self.log.info("Test getblockbyheight with verbosity=RaW_BlocK")
        blockhex = node.getblockbyheight(1, "RaW_BlocK")
        assert_is_hex_string(blockhex)

        self.log.info("Test getblockbyheight with verbosity=1")
        blockjson = node.getblockbyheight(200, 1)
        assert_equal(blockjson['hash'], besthash)
        assert_equal(blockjson['height'], 200)
        assert_equal(blockjson['confirmations'], 1)
        assert_equal(blockjson['previousblockhash'], secondbesthash)
        assert_is_hex_string(blockjson['chainwork'])
        assert_is_hash_string(blockjson['hash'])
        assert_is_hash_string(blockjson['previousblockhash'])
        assert_is_hash_string(blockjson['merkleroot'])
        assert_is_hash_string(blockjson['bits'], length=None)
        assert isinstance(blockjson['time'], int)
        assert isinstance(blockjson['mediantime'], int)
        assert isinstance(blockjson['nonce'], int)
        assert isinstance(blockjson['version'], int)
        assert isinstance(int(blockjson['versionHex'], 16), int)
        assert isinstance(blockjson['difficulty'], Decimal)
        assert isinstance(blockjson['tx'], list)
        for tx in blockjson['tx']:
            assert_is_hash_string(tx)

        self.log.info("Test getblockbyheight with verbosity=DECODE_HEADER")
        blockjson = node.getblockbyheight(200, "DECODE_HEADER")
        assert_equal(blockjson['hash'], besthash)
        for tx in blockjson['tx']:
            assert_is_hash_string(tx)

        self.log.info("Test getblockbyheight with verbosity=2")
        blockjson = node.getblockbyheight(200, 2)
        assert_equal(blockjson['hash'], besthash)
        assert_equal(blockjson['height'], 200)
        assert_equal(blockjson['confirmations'], 1)
        assert_equal(blockjson['previousblockhash'], secondbesthash)
        assert_is_hex_string(blockjson['chainwork'])
        assert_is_hash_string(blockjson['hash'])
        assert_is_hash_string(blockjson['previousblockhash'])
        assert_is_hash_string(blockjson['merkleroot'])
        assert_is_hash_string(blockjson['bits'], length=None)
        assert isinstance(blockjson['time'], int)
        assert isinstance(blockjson['mediantime'], int)
        assert isinstance(blockjson['nonce'], int)
        assert isinstance(blockjson['version'], int)
        assert isinstance(int(blockjson['versionHex'], 16), int)
        assert isinstance(blockjson['difficulty'], Decimal)
        for tx in blockjson['tx']:
            assert isinstance(tx, dict)

        self.log.info(
            "Test getblockbyheight with verbosity=DECODE_TRANSACTIONS")
        blockjson = node.getblockbyheight(200, "DECODE_TRANSACTIONS")
        assert_equal(blockjson['hash'], besthash)
        for tx in blockjson['tx']:
            assert isinstance(tx, dict)

        self.log.info("Test getblockbyheight with verbosity=3")
        blockjson = node.getblockbyheight(200, 3)
        assert_equal(blockjson['hash'], besthash)
        assert_equal(blockjson['height'], 200)
        assert_equal(blockjson['confirmations'], 1)
        assert_equal(blockjson['previousblockhash'], secondbesthash)
        assert_is_hex_string(blockjson['chainwork'])
        assert_is_hash_string(blockjson['hash'])
        assert_is_hash_string(blockjson['previousblockhash'])
        assert_is_hash_string(blockjson['merkleroot'])
        assert_is_hash_string(blockjson['bits'], length=None)
        assert isinstance(blockjson['time'], int)
        assert isinstance(blockjson['mediantime'], int)
        assert isinstance(blockjson['nonce'], int)
        assert isinstance(blockjson['version'], int)
        assert isinstance(int(blockjson['versionHex'], 16), int)
        assert isinstance(blockjson['difficulty'], Decimal)
        #only coinbase tx should be in block
        assert_equal(len(blockjson['tx']), 1)
        tx = blockjson['tx'][0]
        assert isinstance(tx, dict)
        assert_is_hash_string(tx['vin'][0]['coinbase'], length=None)

        self.log.info(
            "Test getblockbyheight with verbosity=DECODE_HEADER_AND_COINBASE")
        blockjson = node.getblockbyheight(200, "DECODE_HEADER_AND_COINBASE")
        assert_equal(blockjson['hash'], besthash)
        #only coinbase tx should be in block
        assert_equal(len(blockjson['tx']), 1)
        tx = blockjson['tx'][0]
        assert isinstance(tx, dict)
        assert_is_hash_string(tx['vin'][0]['coinbase'], length=None)

        self.log.info("Test getblock with invalid verbosity fails")
        assert_raises_rpc_error(-8, "Verbosity value out of range",
                                node.getblockbyheight, 200, 4)
        assert_raises_rpc_error(-8, "Verbosity value out of range",
                                node.getblockbyheight, 200, -1)
        assert_raises_rpc_error(-8, "Verbosity value not recognized",
                                node.getblockbyheight, 200, "ASDFG")
        assert_raises_rpc_error(-8, "Block height out of range",
                                node.getblockbyheight, -1)
        assert_raises_rpc_error(-8, "Block height out of range",
                                node.getblockbyheight, 300)