Esempio n. 1
0
 def p2pkh_address_to_script(self,v):
     pubkey = hex_str_to_bytes(v['pubkey'])
     p2wpkh = CScript([OP_0, hash160(pubkey)])
     p2sh_p2wpkh = CScript([OP_HASH160, hash160(p2wpkh), OP_EQUAL])
     p2pk = CScript([pubkey, OP_CHECKSIG])
     p2pkh = CScript(hex_str_to_bytes(v['scriptPubKey']))
     p2sh_p2pk = CScript([OP_HASH160, hash160(p2pk), OP_EQUAL])
     p2sh_p2pkh = CScript([OP_HASH160, hash160(p2pkh), OP_EQUAL])
     p2wsh_p2pk = CScript([OP_0, sha256(p2pk)])
     p2wsh_p2pkh = CScript([OP_0, sha256(p2pkh)])
     p2sh_p2wsh_p2pk = CScript([OP_HASH160, hash160(p2wsh_p2pk), OP_EQUAL])
     p2sh_p2wsh_p2pkh = CScript([OP_HASH160, hash160(p2wsh_p2pkh), OP_EQUAL])
     return [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]
    def assert_tx_format_also_signed(self, utxo, segwit):
        raw = self.nodes[0].createrawtransaction(
            [{"txid": utxo["txid"], "vout": utxo["vout"]}],
            [{self.unknown_addr: "49.9"}, {"fee": "0.1"}]
        )

        unsigned_decoded = self.nodes[0].decoderawtransaction(raw)
        assert_equal(len(unsigned_decoded["vin"]), 1)
        assert('txinwitness' not in unsigned_decoded["vin"][0])

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(len(tx.vin), len(unsigned_decoded["vin"]))
        assert_equal(len(tx.vout), len(unsigned_decoded["vout"]))
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, raw)

        # Now sign and repeat tests
        signed_raw = self.nodes[0].signrawtransactionwithwallet(raw)["hex"]
        signed_decoded = self.nodes[0].decoderawtransaction(signed_raw)
        assert_equal(len(signed_decoded["vin"]), 1)
        assert(("txinwitness" in signed_decoded["vin"][0]) == segwit)

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(signed_raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(bytes_to_hex_str(tx.vin[0].scriptSig), signed_decoded["vin"][0]["scriptSig"]["hex"])
        # test witness
        if segwit:
            wit_decoded = signed_decoded["vin"][0]["txinwitness"]
            for i in range(len(wit_decoded)):
                assert_equal(bytes_to_hex_str(tx.wit.vtxinwit[0].scriptWitness.stack[i]), wit_decoded[i])
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, signed_raw)

        txid = self.nodes[0].sendrawtransaction(serialized)
        nodetx = self.nodes[0].getrawtransaction(txid, 1)
        assert_equal(nodetx["txid"], tx.rehash())
        # cross-check wtxid report from node
        wtxid = bytes_to_hex_str(ser_uint256(tx.calc_sha256(True))[::-1])
        assert_equal(nodetx["wtxid"], wtxid)
        assert_equal(nodetx["hash"], wtxid)

        # witness hash stuff
        assert_equal(nodetx["withash"], tx.calc_witness_hash())
        return (txid, wtxid)
Esempio n. 3
0
  def buildDummySegwitNameUpdate (self, name, value, addr):
    """
    Builds a transaction that updates the given name to the given value and
    address.  We assume that the name is at a native segwit script.  The witness
    of the transaction will be set to two dummy stack elements so that the
    program itself is "well-formed" even if it won't execute successfully.
    """

    data = self.node.name_show (name)
    u = self.findUnspent (Decimal ('0.01'))
    ins = [data, u]
    outs = {addr: Decimal ('0.01')}

    txHex = self.node.createrawtransaction (ins, outs)
    nameOp = {"op": "name_update", "name": name, "value": value}
    txHex = self.node.namerawtransaction (txHex, 0, nameOp)['hex']
    txHex = self.node.signrawtransactionwithwallet (txHex)['hex']

    tx = CTransaction ()
    tx.deserialize (io.BytesIO (hex_str_to_bytes (txHex)))
    tx.wit = CTxWitness ()
    tx.wit.vtxinwit.append (CTxInWitness ())
    tx.wit.vtxinwit[0].scriptWitness = CScriptWitness ()
    tx.wit.vtxinwit[0].scriptWitness.stack = [b"dummy"] * 2
    txHex = tx.serialize ().hex ()

    return txHex
def sign_transaction(node, unsignedtx):
    rawtx = ToHex(unsignedtx)
    signresult = node.signrawtransactionwithwallet(rawtx)
    tx = CTransaction()
    f = BytesIO(hex_str_to_bytes(signresult['hex']))
    tx.deserialize(f)
    return tx
def create_transaction(node, txid, to_address, amount):
    inputs = [{"txid": txid, "vout": 0}]
    outputs = {to_address: amount}
    rawtx = node.createrawtransaction(inputs, outputs)
    tx = CTransaction()
    f = BytesIO(hex_str_to_bytes(rawtx))
    tx.deserialize(f)
    return tx
Esempio n. 6
0
  def setScriptSigOps (self, txHex, ind, scriptSigOps):
    """
    Update the given hex transaction by setting the scriptSig for the
    input with the given index.
    """

    tx = CTransaction ()
    tx.deserialize (io.BytesIO (hex_str_to_bytes (txHex)))
    tx.vin[ind].scriptSig = CScript (scriptSigOps)

    return tx.serialize ().hex ()
Esempio n. 7
0
  def addAuxpow (self, block, blkHash, ok):
    """
    Fills in the auxpow for the given block message.  It is either
    chosen to be valid (ok = True) or invalid (ok = False).
    """

    target = b"%064x" % uint256_from_compact (block.nBits)
    auxpowHex = computeAuxpow (blkHash, target, ok)
    block.auxpow = CAuxPow ()
    block.auxpow.deserialize (BytesIO (hex_str_to_bytes (auxpowHex)))

    return block
Esempio n. 8
0
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
    """Create a txout with a given amount and scriptPubKey

    Mines coins as needed.

    confirmed - txouts created will be confirmed in the blockchain;
                unconfirmed otherwise.
    """
    fee = 1*COIN
    while node.getbalance()['bitcoin'] < satoshi_round((amount + fee)/COIN):
        node.generate(100)

    new_addr = node.getnewaddress()
    unblinded_addr = node.validateaddress(new_addr)["unconfidential"]
    txidstr = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
    tx1 = node.getrawtransaction(txidstr, 1)
    txid = int(txidstr, 16)
    i = None

    for i, txout in enumerate(tx1['vout']):
        if txout['scriptPubKey']['type'] == "fee":
            continue # skip fee outputs
        if txout['scriptPubKey']['addresses'] == [unblinded_addr]:
            break
    assert i is not None

    tx2 = CTransaction()
    tx2.vin = [CTxIn(COutPoint(txid, i))]
    tx1raw = CTransaction()
    tx1raw.deserialize(BytesIO(hex_str_to_bytes(node.getrawtransaction(txidstr))))
    feeout = CTxOut(CTxOutValue(tx1raw.vout[i].nValue.getAmount() - amount))
    tx2.vout = [CTxOut(amount, scriptPubKey), feeout]
    tx2.rehash()

    signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))

    txid = node.sendrawtransaction(signed_tx['hex'], True)

    # If requested, ensure txouts are confirmed.
    if confirmed:
        mempool_size = len(node.getrawmempool())
        while mempool_size > 0:
            node.generate(1)
            new_size = len(node.getrawmempool())
            # Error out if we have something stuck in the mempool, as this
            # would likely be a bug.
            assert(new_size < mempool_size)
            mempool_size = new_size

    return COutPoint(int(txid, 16), 0)
Esempio n. 9
0
def submit_block_with_tx(node, tx):
    ctx = CTransaction()
    ctx.deserialize(io.BytesIO(hex_str_to_bytes(tx)))

    tip = node.getbestblockhash()
    height = node.getblockcount() + 1
    block_time = node.getblockheader(tip)["mediantime"] + 1
    block = create_block(int(tip, 16), create_coinbase(height), block_time)
    block.vtx.append(ctx)
    block.rehash()
    block.hashMerkleRoot = block.calc_merkle_root()
    add_witness_commitment(block)
    block.solve()
    node.submitblock(block.serialize(True).hex())
    return block
Esempio n. 10
0
 def create_and_mine_tx_from_txids(self, txids, success = True):
     tx = CTransaction()
     for i in txids:
         txtmp = CTransaction()
         txraw = self.nodes[0].getrawtransaction(i)
         f = BytesIO(hex_str_to_bytes(txraw))
         txtmp.deserialize(f)
         for j in range(len(txtmp.vout)):
             tx.vin.append(CTxIn(COutPoint(int('0x'+i,0), j)))
     tx.vout.append(CTxOut(0, CScript()))
     tx.rehash()
     signresults = self.nodes[0].signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize_without_witness()))['hex']
     self.nodes[0].sendrawtransaction(signresults, True)
     self.nodes[0].generate(1)
     sync_blocks(self.nodes)
Esempio n. 11
0
def cltv_validate(node, tx, height):
    '''Modify the signature in vin 0 of the tx to pass CLTV
    Prepends <height> CLTV DROP in the scriptSig, and sets
    the locktime to height'''
    tx.vin[0].nSequence = 0
    tx.nLockTime = height

    # Need to re-sign, since nSequence and nLockTime changed
    signed_result = node.signrawtransactionwithwallet(ToHex(tx))
    new_tx = CTransaction()
    new_tx.deserialize(BytesIO(hex_str_to_bytes(signed_result['hex'])))

    new_tx.vin[0].scriptSig = CScript([CScriptNum(height), OP_CHECKLOCKTIMEVERIFY, OP_DROP] +
                                  list(CScript(new_tx.vin[0].scriptSig)))
    return new_tx
Esempio n. 12
0
def get_key(node):
    """Generate a fresh key on node

    Returns a named tuple of privkey, pubkey and all address and scripts."""
    addr = node.getnewaddress()
    pubkey = node.getaddressinfo(addr)['pubkey']
    pkh = hash160(hex_str_to_bytes(pubkey))
    return Key(privkey=node.dumpprivkey(addr),
               pubkey=pubkey,
               p2pkh_script=CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(),
               p2pkh_addr=key_to_p2pkh(pubkey),
               p2wpkh_script=CScript([OP_0, pkh]).hex(),
               p2wpkh_addr=key_to_p2wpkh(pubkey),
               p2sh_p2wpkh_script=CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(),
               p2sh_p2wpkh_redeem_script=CScript([OP_0, pkh]).hex(),
               p2sh_p2wpkh_addr=key_to_p2sh_p2wpkh(pubkey))
Esempio n. 13
0
    def get_key(self):
        """Generate a fresh key on node0

        Returns a named tuple of privkey, pubkey and all address and scripts."""
        addr = self.nodes[0].getnewaddress()
        pubkey = self.nodes[0].getaddressinfo(addr)['pubkey']
        pkh = hash160(hex_str_to_bytes(pubkey))
        return Key(self.nodes[0].dumpprivkey(addr),
                   pubkey,
                   CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(),  # p2pkh
                   key_to_p2pkh(pubkey),  # p2pkh addr
                   CScript([OP_0, pkh]).hex(),  # p2wpkh
                   key_to_p2wpkh(pubkey),  # p2wpkh addr
                   CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(),  # p2sh-p2wpkh
                   CScript([OP_0, pkh]).hex(),  # p2sh-p2wpkh redeem script
                   key_to_p2sh_p2wpkh(pubkey))  # p2sh-p2wpkh addr
Esempio n. 14
0
  def run_test (self):
    node = self.nodes[0]
    p2pStore = node.add_p2p_connection (P2PDataStore ())
    p2pGetter = node.add_p2p_connection (P2PBlockGetter ())

    self.log.info ("Adding a block with non-zero hash in the auxpow...")
    blk, blkHash = self.createBlock ()
    blk.auxpow.hashBlock = 12345678
    blkHex = blk.serialize ().hex ()
    assert_equal (node.submitblock (blkHex), None)
    assert_equal (node.getbestblockhash (), blkHash)

    self.log.info ("Retrieving block through RPC...")
    gotHex = node.getblock (blkHash, 0)
    assert gotHex != blkHex
    gotBlk = CBlock ()
    gotBlk.deserialize (BytesIO (hex_str_to_bytes (gotHex)))
    assert_equal (gotBlk.auxpow.hashBlock, 0)

    self.log.info ("Retrieving block through P2P...")
    gotBlk = p2pGetter.getBlock (blkHash)
    assert_equal (gotBlk.auxpow.hashBlock, 0)

    self.log.info ("Sending zero-hash auxpow through RPC...")
    blk, blkHash = self.createBlock ()
    blk.auxpow.hashBlock = 0
    assert_equal (node.submitblock (blk.serialize ().hex ()), None)
    assert_equal (node.getbestblockhash (), blkHash)

    self.log.info ("Sending zero-hash auxpow through P2P...")
    blk, blkHash = self.createBlock ()
    blk.auxpow.hashBlock = 0
    p2pStore.send_blocks_and_test ([blk], node, success=True)
    assert_equal (node.getbestblockhash (), blkHash)

    self.log.info ("Sending non-zero nIndex auxpow through RPC...")
    blk, blkHash = self.createBlock ()
    blk.auxpow.nIndex = 42
    assert_equal (node.submitblock (blk.serialize ().hex ()), None)
    assert_equal (node.getbestblockhash (), blkHash)

    self.log.info ("Sending non-zero nIndex auxpow through P2P...")
    blk, blkHash = self.createBlock ()
    blk.auxpow.nIndex = 42
    p2pStore.send_blocks_and_test ([blk], node, success=True)
    assert_equal (node.getbestblockhash (), blkHash)
Esempio n. 15
0
def get_multisig(node):
    """Generate a fresh 2-of-3 multisig on node

    Returns a named tuple of privkeys, pubkeys and all address and scripts."""
    addrs = []
    pubkeys = []
    for _ in range(3):
        addr = node.getaddressinfo(node.getnewaddress())
        addrs.append(addr['address'])
        pubkeys.append(addr['pubkey'])
    script_code = CScript([OP_2] + [hex_str_to_bytes(pubkey) for pubkey in pubkeys] + [OP_3, OP_CHECKMULTISIG])
    witness_script = CScript([OP_0, sha256(script_code)])
    return Multisig(privkeys=[node.dumpprivkey(addr) for addr in addrs],
                    pubkeys=pubkeys,
                    p2sh_script=CScript([OP_HASH160, hash160(script_code), OP_EQUAL]).hex(),
                    p2sh_addr=script_to_p2sh(script_code),
                    redeem_script=script_code.hex(),
                    p2wsh_script=witness_script.hex(),
                    p2wsh_addr=script_to_p2wsh(script_code),
                    p2sh_p2wsh_script=CScript([OP_HASH160, witness_script, OP_EQUAL]).hex(),
                    p2sh_p2wsh_addr=script_to_p2sh_p2wsh(script_code))
Esempio n. 16
0
    def get_multisig(self):
        """Generate a fresh multisig on node0

        Returns a named tuple of privkeys, pubkeys and all address and scripts."""
        addrs = []
        pubkeys = []
        for _ in range(3):
            addr = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
            addrs.append(addr['address'])
            pubkeys.append(addr['pubkey'])
        script_code = CScript([OP_2] + [hex_str_to_bytes(pubkey) for pubkey in pubkeys] + [OP_3, OP_CHECKMULTISIG])
        witness_script = CScript([OP_0, sha256(script_code)])
        return Multisig([self.nodes[0].dumpprivkey(addr) for addr in addrs],
                        pubkeys,
                        CScript([OP_HASH160, hash160(script_code), OP_EQUAL]).hex(),  # p2sh
                        script_to_p2sh(script_code),  # p2sh addr
                        script_code.hex(),  # redeem script
                        witness_script.hex(),  # p2wsh
                        script_to_p2wsh(script_code),  # p2wsh addr
                        CScript([OP_HASH160, witness_script, OP_EQUAL]).hex(),  # p2sh-p2wsh
                        script_to_p2sh_p2wsh(script_code))  # p2sh-p2wsh addr
Esempio n. 17
0
  def createBlock (self):
    """
    Creates and mines a new block with auxpow.
    """

    bestHash = self.nodes[0].getbestblockhash ()
    bestBlock = self.nodes[0].getblock (bestHash)
    tip = int (bestHash, 16)
    height = bestBlock["height"] + 1
    time = bestBlock["time"] + 1

    block = create_block (tip, create_coinbase (height), time)
    block.mark_auxpow ()
    block.rehash ()
    newHash = "%064x" % block.sha256

    target = b"%064x" % uint256_from_compact (block.nBits)
    auxpowHex = computeAuxpow (newHash, target, True)
    block.auxpow = CAuxPow ()
    block.auxpow.deserialize (BytesIO (hex_str_to_bytes (auxpowHex)))

    return block, newHash
    def test_transaction_serialization(self):
        legacy_addr = self.nodes[0].getnewaddress("", "legacy")
        p2sh_addr = self.nodes[0].getnewaddress("", "p2sh-segwit")
        bech32_addr = self.nodes[0].getnewaddress("", "bech32")
        self.unknown_addr = self.nodes[1].getnewaddress()

        # directly seed types of utxos required
        self.nodes[0].generatetoaddress(1, legacy_addr)
        self.nodes[0].generatetoaddress(1, p2sh_addr)
        self.nodes[0].generatetoaddress(1, bech32_addr)
        self.nodes[0].generatetoaddress(101, self.unknown_addr)

        # grab utxos filtering by age
        legacy_utxo = self.nodes[0].listunspent(104, 104)[0]
        p2sh_utxo = self.nodes[0].listunspent(103, 103)[0]
        bech32_utxo = self.nodes[0].listunspent(102, 102)[0]

        submitted_txids = []
        self.log.info("Testing legacy UTXO")
        submitted_txids.append(self.assert_tx_format_also_signed(legacy_utxo, segwit=False))
        self.log.info("Testing p2sh UTXO")
        submitted_txids.append(self.assert_tx_format_also_signed(p2sh_utxo, segwit=True))
        self.log.info("Testing bech32 UTXO")
        submitted_txids.append(self.assert_tx_format_also_signed(bech32_utxo, segwit=True))

        blockhash = self.nodes[0].generate(1)[0]
        hexblock = self.nodes[0].getblock(blockhash, 0)
        block_details = self.nodes[0].getblock(blockhash, 2)
        block = CBlock()
        block.deserialize(BytesIO(hex_str_to_bytes(hexblock)))
        assert(len(block.vtx) == len(submitted_txids) + 1)
        assert_equal(len(block_details["tx"]), len(block.vtx))
        for tx1, tx2 in zip(block.vtx[1:], block_details["tx"][1:]):
            # no tuple wildcard, just re-used tx2 on first one
            assert((tx1.rehash(), tx2["wtxid"]) in submitted_txids)
            assert((tx2["txid"], tx2["hash"]) in submitted_txids)
            assert((tx2["txid"], tx2["wtxid"]) in submitted_txids)
        block.rehash()
        assert_equal(block.hash, self.nodes[0].getbestblockhash())
Esempio n. 19
0
 def witness_script_test(self):
     # Now test signing transaction to P2SH-P2WSH addresses without wallet
     # Create a new P2SH-P2WSH 1-of-1 multisig address:
     embedded_address = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())
     embedded_privkey = self.nodes[1].dumpprivkey(embedded_address["address"])
     p2sh_p2wsh_address = self.nodes[1].addmultisigaddress(1, [embedded_address["pubkey"]], "", "p2sh-segwit")
     # send transaction to P2SH-P2WSH 1-of-1 multisig address
     self.nodes[0].generate(101)
     self.nodes[0].sendtoaddress(p2sh_p2wsh_address["address"], 49.999)
     self.nodes[0].generate(1)
     self.sync_all()
     # Find the UTXO for the transaction node[1] should have received, check witnessScript matches
     unspent_output = self.nodes[1].listunspent(0, 999999, [p2sh_p2wsh_address["address"]])[0]
     assert_equal(unspent_output["witnessScript"], p2sh_p2wsh_address["redeemScript"])
     p2sh_redeemScript = CScript([OP_0, sha256(hex_str_to_bytes(p2sh_p2wsh_address["redeemScript"]))])
     assert_equal(unspent_output["redeemScript"], p2sh_redeemScript.hex())
     # Now create and sign a transaction spending that output on node[0], which doesn't know the scripts or keys
     spending_tx = self.nodes[0].createrawtransaction([unspent_output], {self.nodes[1].getnewaddress(): Decimal("49.998")})
     spending_tx_signed = self.nodes[0].signrawtransactionwithkey(spending_tx, [embedded_privkey], [unspent_output])
     # Check the signing completed successfully
     assert 'complete' in spending_tx_signed
     assert_equal(spending_tx_signed['complete'], True)
Esempio n. 20
0
    def sign_stake_tx(self, block, stake_in_value, fZPoS=False):
        ''' signs a coinstake transaction
        :param      block:           (CBlock) block with stake to sign
                    stake_in_value:  (int) staked amount
                    fZPoS:           (bool) zerocoin stake
        :return:    stake_tx_signed: (CTransaction) signed tx
        '''
        self.block_sig_key = CECKey()

        if fZPoS:
            self.log.info("Signing zPoS stake...")
            # Create raw zerocoin stake TX (signed)
            raw_stake = self.node.createrawzerocoinstake(block.prevoutStake)
            stake_tx_signed_raw_hex = raw_stake["hex"]
            # Get stake TX private key to sign the block with
            stake_pkey = raw_stake["private-key"]
            self.block_sig_key.set_compressed(True)
            self.block_sig_key.set_secretbytes(bytes.fromhex(stake_pkey))

        else:
            # Create a new private key and get the corresponding public key
            self.block_sig_key.set_secretbytes(hash256(pack('<I', 0xffff)))
            pubkey = self.block_sig_key.get_pubkey()
            # Create the raw stake TX (unsigned)
            scriptPubKey = CScript([pubkey, OP_CHECKSIG])
            outNValue = int(stake_in_value + 2*COIN)
            stake_tx_unsigned = CTransaction()
            stake_tx_unsigned.nTime = block.nTime
            stake_tx_unsigned.vin.append(CTxIn(block.prevoutStake))
            stake_tx_unsigned.vin[0].nSequence = 0xffffffff
            stake_tx_unsigned.vout.append(CTxOut())
            stake_tx_unsigned.vout.append(CTxOut(outNValue, scriptPubKey))
            # Sign the stake TX
            stake_tx_signed_raw_hex = self.node.signrawtransaction(bytes_to_hex_str(stake_tx_unsigned.serialize()))['hex']

        # Deserialize the signed raw tx into a CTransaction object and return it
        stake_tx_signed = CTransaction()
        stake_tx_signed.deserialize(BytesIO(hex_str_to_bytes(stake_tx_signed_raw_hex)))
        return stake_tx_signed
Esempio n. 21
0
  def tryUpdateInBlock (self, name, value, addr, withWitness):
    """
    Tries to update the given name with a dummy witness directly in a block
    (to bypass any checks done on the mempool).
    """

    txHex = self.buildDummySegwitNameUpdate (name, value, addr)
    tx = CTransaction ()
    tx.deserialize (io.BytesIO (hex_str_to_bytes (txHex)))

    tip = self.node.getbestblockhash ()
    height = self.node.getblockcount () + 1
    nTime = self.node.getblockheader (tip)["mediantime"] + 1
    block = create_block (int (tip, 16), create_coinbase (height), nTime,
                          version=4)

    block.vtx.append (tx)
    add_witness_commitment (block, 0)
    block.solve ()

    blkHex = block.serialize (withWitness).hex ()
    return self.node.submitblock (blkHex)
Esempio n. 22
0
    def generate_small_transactions(self, node, count, utxo_list):
        FEE = 1000  # TODO: replace this with node relay fee based calculation
        num_transactions = 0
        random.shuffle(utxo_list)
        while len(utxo_list) >= 2 and num_transactions < count:
            tx = CTransaction()
            input_amount = 0
            for i in range(2):
                utxo = utxo_list.pop()
                tx.vin.append(CTxIn(COutPoint(int(utxo['txid'], 16), utxo['vout'])))
                input_amount += int(utxo['amount'] * COIN)
            output_amount = (input_amount - FEE) // 3

            if output_amount <= 0:
                # Sanity check -- if we chose inputs that are too small, skip
                continue

            for i in range(3):
                tx.vout.append(CTxOut(output_amount, hex_str_to_bytes(utxo['scriptPubKey'])))

            # Sign and send the transaction to get into the mempool
            tx_signed_hex = node.signrawtransactionwithwallet(ToHex(tx))['hex']
            node.sendrawtransaction(tx_signed_hex)
            num_transactions += 1
Esempio n. 23
0
    def run_test(self):
        self.log.info('prepare some coins for multiple *rawtransaction commands')
        self.nodes[2].generate(1)
        self.sync_all()
        self.nodes[0].generate(101)
        self.sync_all()
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5)
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0)
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0)
        self.sync_all()
        self.nodes[0].generate(5)
        self.sync_all()

        self.log.info('Test getrawtransaction on genesis block coinbase returns an error')
        block = self.nodes[0].getblock(self.nodes[0].getblockhash(0))
        assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot'])

        self.log.info('Check parameter types and required parameters of createrawtransaction')
        # Test `createrawtransaction` required parameters
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction)
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [])

        # Test `createrawtransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo')

        # Test `createrawtransaction` invalid `inputs`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {})
        assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {})
        assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {})
        assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {})
        assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", self.nodes[0].createrawtransaction, [{'txid': 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844'}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {})

        # Test `createrawtransaction` invalid `outputs`
        address = self.nodes[0].getnewaddress()
        address2 = self.nodes[0].getnewaddress()
        assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo')
        self.nodes[0].createrawtransaction(inputs=[], outputs={})  # Should not throw for backwards compatibility
        self.nodes[0].createrawtransaction(inputs=[], outputs=[])
        assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'})
        assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0})
        assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'})
        assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1})
        assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)]))
        assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}])
        assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}])
        assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")]))
        assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}])
        assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']])

        # Test `createrawtransaction` invalid `locktime`
        assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo')
        assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1)
        assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296)

        # Test `createrawtransaction` invalid `replaceable`
        assert_raises_rpc_error(-3, "Expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo')

        self.log.info('Check that createrawtransaction accepts an array and object as outputs')
        tx = CTransaction()
        # One output
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99}))))
        assert_equal(len(tx.vout), 1)
        assert_equal(
            bytes_to_hex_str(tx.serialize()),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]),
        )
        # Two outputs
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)])))))
        assert_equal(len(tx.vout), 2)
        assert_equal(
            bytes_to_hex_str(tx.serialize()),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]),
        )
        # Multiple mixed outputs
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')])))))
        assert_equal(len(tx.vout), 3)
        assert_equal(
            bytes_to_hex_str(tx.serialize()),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}, {'data': '99'}]),
        )

        for type in ["bech32", "p2sh-segwit", "legacy"]:
            addr = self.nodes[0].getnewaddress("", type)
            addrinfo = self.nodes[0].getaddressinfo(addr)
            pubkey = addrinfo["scriptPubKey"]

            self.log.info('sendrawtransaction with missing prevtx info (%s)' %(type))

            # Test `signrawtransactionwithwallet` invalid `prevtxs`
            inputs  = [ {'txid' : txid, 'vout' : 3, 'sequence' : 1000}]
            outputs = { self.nodes[0].getnewaddress() : 1 }
            rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)

            prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1)
            succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
            assert succ["complete"]
            if type == "legacy":
                del prevtx["amount"]
                succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
                assert succ["complete"]

            if type != "legacy":
                assert_raises_rpc_error(-3, "Missing amount", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                    {
                        "txid": txid,
                        "scriptPubKey": pubkey,
                        "vout": 3,
                    }
                ])

            assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "txid": txid,
                    "scriptPubKey": pubkey,
                    "amount": 1,
                }
            ])
            assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "scriptPubKey": pubkey,
                    "vout": 3,
                    "amount": 1,
                }
            ])
            assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "txid": txid,
                    "vout": 3,
                    "amount": 1
                }
            ])

        #########################################
        # sendrawtransaction with missing input #
        #########################################

        self.log.info('sendrawtransaction with missing input')
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists
        outputs = { self.nodes[0].getnewaddress() : 4.998 }
        rawtx   = self.nodes[2].createrawtransaction(inputs, outputs)
        rawtx   = self.nodes[2].signrawtransactionwithwallet(rawtx)

        # This will raise an exception since there are missing inputs
        assert_raises_rpc_error(-25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex'])

        #####################################
        # getrawtransaction with block hash #
        #####################################

        # make a tx by sending then generate 2 blocks; block1 has the tx in it
        tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1)
        block1, block2 = self.nodes[2].generate(2)
        self.sync_all()
        # We should be able to get the raw transaction by providing the correct block
        gottx = self.nodes[0].getrawtransaction(tx, True, block1)
        assert_equal(gottx['txid'], tx)
        assert_equal(gottx['in_active_chain'], True)
        # We should not have the 'in_active_chain' flag when we don't provide a block
        gottx = self.nodes[0].getrawtransaction(tx, True)
        assert_equal(gottx['txid'], tx)
        assert 'in_active_chain' not in gottx
        # We should not get the tx if we provide an unrelated block
        assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2)
        # An invalid block hash should raise the correct errors
        assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].getrawtransaction, tx, True, True)
        assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[0].getrawtransaction, tx, True, "foobar")
        assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[0].getrawtransaction, tx, True, "abcd1234")
        assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].getrawtransaction, tx, True, "ZZZ0000000000000000000000000000000000000000000000000000000000000")
        assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000")
        # Undo the blocks and check in_active_chain
        self.nodes[0].invalidateblock(block1)
        gottx = self.nodes[0].getrawtransaction(txid=tx, verbose=True, blockhash=block1)
        assert_equal(gottx['in_active_chain'], False)
        self.nodes[0].reconsiderblock(block1)
        assert_equal(self.nodes[0].getbestblockhash(), block2)

        #########################
        # RAW TX MULTISIG TESTS #
        #########################
        # 2of2 test
        addr1 = self.nodes[2].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[2].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)

        # Tests for createmultisig and addmultisigaddress
        assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"])
        self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # createmultisig can only take public keys
        assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here.

        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address']

        #use balance deltas instead of absolute values
        bal = self.nodes[2].getbalance()

        # send 1.2 BTC to msig adr
        txId = self.nodes[0].sendtoaddress(mSigObj, 1.2)
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance


        # 2of3 test from different nodes
        bal = self.nodes[2].getbalance()
        addr1 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()
        addr3 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[1].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)
        addr3Obj = self.nodes[2].getaddressinfo(addr3)

        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address']

        txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
        decTx = self.nodes[0].gettransaction(txId)
        rawTx = self.nodes[0].decoderawtransaction(decTx['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()

        #THIS IS AN INCOMPLETE FEATURE
        #NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION
        assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable

        txDetails = self.nodes[0].gettransaction(txId, True)
        rawTx = self.nodes[0].decoderawtransaction(txDetails['hex'])
        vout = False
        for outpoint in rawTx['vout']:
            if outpoint['value'] == Decimal('2.20000000'):
                vout = outpoint
                break

        bal = self.nodes[0].getbalance()
        inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "amount" : vout['value']}]
        outputs = { self.nodes[0].getnewaddress() : 2.19 }
        rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs)
        assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx

        rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs)
        assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys
        self.nodes[2].sendrawtransaction(rawTxSigned['hex'])
        rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx

        # 2of2 test for combining transactions
        bal = self.nodes[2].getbalance()
        addr1 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[1].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)

        self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
        mSigObjValid = self.nodes[2].getaddressinfo(mSigObj)

        txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
        decTx = self.nodes[0].gettransaction(txId)
        rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()

        assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable

        txDetails = self.nodes[0].gettransaction(txId, True)
        rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex'])
        vout = False
        for outpoint in rawTx2['vout']:
            if outpoint['value'] == Decimal('2.20000000'):
                vout = outpoint
                break

        bal = self.nodes[0].getbalance()
        inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}]
        outputs = { self.nodes[0].getnewaddress() : 2.19 }
        rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned1)
        assert_equal(rawTxPartialSigned1['complete'], False) #node1 only has one key, can't comp. sign the tx

        rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned2)
        assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx
        rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']])
        self.log.debug(rawTxComb)
        self.nodes[2].sendrawtransaction(rawTxComb)
        rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb)
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx

        # decoderawtransaction tests
        # witness transaction
        encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
        assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction
        # non-witness transaction
        encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))

        # getrawtransaction tests
        # 1. valid parameters - only supply txid
        txHash = rawTx["hash"]
        assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex'])

        # 2. valid parameters - supply txid and 0 for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex'])

        # 3. valid parameters - supply txid and False for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex'])

        # 4. valid parameters - supply txid and 1 for verbose.
        # We only check the "hex" field of the output so we don't need to update this test every time the output format changes.
        assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex'])

        # 5. valid parameters - supply txid and True for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex'])

        # 6. invalid parameters - supply txid and string "Flase"
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "Flase")

        # 7. invalid parameters - supply txid and empty array
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, [])

        # 8. invalid parameters - supply txid and empty dict
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {})

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 1000)

        # 9. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        # 10. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 4294967294)

        ####################################
        # TRANSACTION VERSION NUMBER TESTS #
        ####################################

        # Test the minimum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = -0x80000000
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], -0x80000000)

        # Test the maximum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = 0x7fffffff
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], 0x7fffffff)
Esempio n. 24
0
 def def_utxo(height):
     hex_id = hex_str_to_bytes('0' * 64)
     uint256 = uint256_from_str(hex_id)
     return UTXO(height, TxType.REGULAR, COutPoint(uint256, 0),
                 CTxOut(0, b""))
Esempio n. 25
0
def FromHex(obj, hex_string):
    obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
    return obj
Esempio n. 26
0
 def test_addrv2_no_addresses(self):
     self.test_addrv2('no addresses', [
         'received: addrv2 (1 bytes)',
     ], hex_str_to_bytes('00'))
Esempio n. 27
0
    def decodescript_script_pub_key(self):
        public_key = '03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2'
        push_public_key = '21' + public_key
        public_key_hash = '5dd1d3a048119c27b28293056724d9522f26d945'
        push_public_key_hash = '14' + public_key_hash
        uncompressed_public_key = '04b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb25e01fc8fde47c96c98a4f3a8123e33a38a50cf9025cc8c4494a518f991792bb7'
        push_uncompressed_public_key = '41' + uncompressed_public_key
        p2wsh_p2pk_script_hash = 'd8590cf8ea0674cf3d49fd7ca249b85ef7485dea62c138468bddeb20cd6519f7'

        # below are test cases for all of the standard transaction types

        # 1) P2PK scriptPubKey
        # <pubkey> OP_CHECKSIG
        rpc_result = self.nodes[0].decodescript(push_public_key + 'ac')
        assert_equal(public_key + ' OP_CHECKSIG', rpc_result['asm'])
        # P2PK is translated to P2WPKH
        assert_equal('0 ' + public_key_hash, rpc_result['segwit']['asm'])

        # 2) P2PKH scriptPubKey
        # OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG
        rpc_result = self.nodes[0].decodescript('76a9' + push_public_key_hash +
                                                '88ac')
        assert_equal(
            'OP_DUP OP_HASH160 ' + public_key_hash +
            ' OP_EQUALVERIFY OP_CHECKSIG', rpc_result['asm'])
        # P2PKH is translated to P2WPKH
        assert_equal('0 ' + public_key_hash, rpc_result['segwit']['asm'])

        # 3) multisig scriptPubKey
        # <m> <A pubkey> <B pubkey> <C pubkey> <n> OP_CHECKMULTISIG
        # just imagine that the pub keys used below are different.
        # for our purposes here it does not matter that they are the same even though it is unrealistic.
        multisig_script = '52' + push_public_key + push_public_key + push_public_key + '53ae'
        rpc_result = self.nodes[0].decodescript(multisig_script)
        assert_equal(
            '2 ' + public_key + ' ' + public_key + ' ' + public_key +
            ' 3 OP_CHECKMULTISIG', rpc_result['asm'])
        # multisig in P2WSH
        multisig_script_hash = bytes_to_hex_str(
            sha256(hex_str_to_bytes(multisig_script)))
        assert_equal('0 ' + multisig_script_hash, rpc_result['segwit']['asm'])

        # 4) P2SH scriptPubKey
        # OP_HASH160 <Hash160(redeemScript)> OP_EQUAL.
        # push_public_key_hash here should actually be the hash of a redeem script.
        # but this works the same for purposes of this test.
        rpc_result = self.nodes[0].decodescript('a9' + push_public_key_hash +
                                                '87')
        assert_equal('OP_HASH160 ' + public_key_hash + ' OP_EQUAL',
                     rpc_result['asm'])
        # P2SH does not work in segwit secripts. decodescript should not return a result for it.
        assert 'segwit' not in rpc_result

        # 5) null data scriptPubKey
        # use a signature look-alike here to make sure that we do not decode random data as a signature.
        # this matters if/when signature sighash decoding comes along.
        # would want to make sure that no such decoding takes place in this case.
        signature_imposter = '48304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001'
        # OP_RETURN <data>
        rpc_result = self.nodes[0].decodescript('6a' + signature_imposter)
        assert_equal('OP_RETURN ' + signature_imposter[2:], rpc_result['asm'])

        # 6) a CLTV redeem script. redeem scripts are in-effect scriptPubKey scripts, so adding a test here.
        # OP_NOP2 is also known as OP_CHECKLOCKTIMEVERIFY.
        # just imagine that the pub keys used below are different.
        # for our purposes here it does not matter that they are the same even though it is unrealistic.
        #
        # OP_IF
        #   <receiver-pubkey> OP_CHECKSIGVERIFY
        # OP_ELSE
        #   <lock-until> OP_CHECKLOCKTIMEVERIFY OP_DROP
        # OP_ENDIF
        # <sender-pubkey> OP_CHECKSIG
        #
        # lock until block 500,000
        cltv_script = '63' + push_public_key + 'ad670320a107b17568' + push_public_key + 'ac'
        rpc_result = self.nodes[0].decodescript(cltv_script)
        assert_equal(
            'OP_IF ' + public_key +
            ' OP_CHECKSIGVERIFY OP_ELSE 500000 OP_CHECKLOCKTIMEVERIFY OP_DROP OP_ENDIF '
            + public_key + ' OP_CHECKSIG', rpc_result['asm'])
        # CLTV script in P2WSH
        cltv_script_hash = bytes_to_hex_str(
            sha256(hex_str_to_bytes(cltv_script)))
        assert_equal('0 ' + cltv_script_hash, rpc_result['segwit']['asm'])

        # 7) P2PK scriptPubKey
        # <pubkey> OP_CHECKSIG
        rpc_result = self.nodes[0].decodescript(push_uncompressed_public_key +
                                                'ac')
        assert_equal(uncompressed_public_key + ' OP_CHECKSIG',
                     rpc_result['asm'])
        # uncompressed pubkeys are invalid for checksigs in segwit scripts.
        # decodescript should not return a P2WPKH equivalent.
        assert 'segwit' not in rpc_result

        # 8) multisig scriptPubKey with an uncompressed pubkey
        # <m> <A pubkey> <B pubkey> <n> OP_CHECKMULTISIG
        # just imagine that the pub keys used below are different.
        # the purpose of this test is to check that a segwit script is not returned for bare multisig scripts
        # with an uncompressed pubkey in them.
        rpc_result = self.nodes[0].decodescript('52' + push_public_key +
                                                push_uncompressed_public_key +
                                                '52ae')
        assert_equal(
            '2 ' + public_key + ' ' + uncompressed_public_key +
            ' 2 OP_CHECKMULTISIG', rpc_result['asm'])
        # uncompressed pubkeys are invalid for checksigs in segwit scripts.
        # decodescript should not return a P2WPKH equivalent.
        assert 'segwit' not in rpc_result

        # 9) P2WPKH scriptpubkey
        # 0 <PubKeyHash>
        rpc_result = self.nodes[0].decodescript('00' + push_public_key_hash)
        assert_equal('0 ' + public_key_hash, rpc_result['asm'])
        # segwit scripts do not work nested into each other.
        # a nested segwit script should not be returned in the results.
        assert 'segwit' not in rpc_result

        # 10) P2WSH scriptpubkey
        # 0 <ScriptHash>
        # even though this hash is of a P2PK script which is better used as bare P2WPKH, it should not matter
        # for the purpose of this test.
        rpc_result = self.nodes[0].decodescript('0020' +
                                                p2wsh_p2pk_script_hash)
        assert_equal('0 ' + p2wsh_p2pk_script_hash, rpc_result['asm'])
        # segwit scripts do not work nested into each other.
        # a nested segwit script should not be returned in the results.
        assert 'segwit' not in rpc_result
Esempio n. 28
0
    def run_test(self):
        blocks = []
        self.bl_count = 0

        blocks.append(self.nodes[0].getblockhash(0))

        small_target_h = 3

        self.mark_logs("Node0 generates %d blocks" %
                       (CBH_DELTA_HEIGHT + small_target_h - 1))
        blocks.extend(self.nodes[0].generate(CBH_DELTA_HEIGHT +
                                             small_target_h - 1))
        self.sync_all()

        amount_node1 = Decimal("1002.0")
        self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(),
                                    amount_node1)
        self.sync_all()

        self.mark_logs("Node0 generates 1 blocks")
        blocks.extend(self.nodes[0].generate(1))
        self.sync_all()

        self.mark_logs(
            "Trying to send a tx with a scriptPubKey referencing a block too recent..."
        )

        # Create a tx having in its scriptPubKey a custom referenced block in the CHECKBLOCKATHEIGHT part
        # select necessary utxos for doing the PAYMENT
        usp = self.nodes[0].listunspent()

        payment = Decimal('1.0')
        fee = Decimal('0.00005')

        amount = Decimal('0')
        inputs = []
        for x in usp:
            amount += Decimal(x['amount'])
            inputs.append({"txid": x['txid'], "vout": x['vout']})
            if amount >= payment + fee:
                break

        outputs = {
            self.nodes[0].getnewaddress(): (Decimal(amount) - payment - fee),
            self.nodes[2].getnewaddress(): payment
        }
        rawTx = self.nodes[0].createrawtransaction(inputs, outputs)

        # build an object from the raw tx in order to be able to modify it
        tx_01 = CTransaction()
        f = cStringIO.StringIO(unhexlify(rawTx))
        tx_01.deserialize(f)

        decodedScriptOrig = self.nodes[0].decodescript(
            binascii.hexlify(tx_01.vout[1].scriptPubKey))

        scriptOrigAsm = decodedScriptOrig['asm']

        # store the hashed script, it is reused
        params = scriptOrigAsm.split()
        hash160 = hex_str_to_bytes(params[2])

        # new referenced block height
        modTargetHeigth = CBH_DELTA_HEIGHT + small_target_h - FINALITY_MIN_AGE + 5

        # new referenced block hash
        modTargetHash = hex_str_to_bytes(swap_bytes(blocks[modTargetHeigth]))

        # build modified script
        modScriptPubKey = CScript([
            OP_DUP, OP_HASH160, hash160, OP_EQUALVERIFY, OP_CHECKSIG,
            modTargetHash, modTargetHeigth, OP_CHECKBLOCKATHEIGHT
        ])

        tx_01.vout[1].scriptPubKey = modScriptPubKey
        tx_01.rehash()

        decodedScriptMod = self.nodes[0].decodescript(
            binascii.hexlify(tx_01.vout[1].scriptPubKey))
        print "  Modified scriptPubKey in tx 1: ", decodedScriptMod['asm']

        signedRawTx = self.nodes[0].signrawtransaction(ToHex(tx_01))

        h = self.nodes[0].getblockcount()
        assert_greater_than(FINALITY_MIN_AGE, h - modTargetHeigth)

        print "  Node0 sends %f coins to Node2" % payment

        try:
            txid = self.nodes[0].sendrawtransaction(signedRawTx['hex'])
            print "  Tx sent: ", txid
            # should fail, therefore force test failure
            assert_equal(True, False)

        except JSONRPCException, e:
            print "  ==> tx has been rejected as expected:"
            print "      referenced block height=%d, chainActive.height=%d, minimumAge=%d" % (
                modTargetHeigth, h, FINALITY_MIN_AGE)
            print
Esempio n. 29
0
    def run_test(self):
        self.nodes[0].generate(161, self.signblockprivkey)  #block 161

        self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({})
        assert (tmpl['sizelimit'] == 1000000)
        assert ('weightlimit' not in tmpl)
        assert (tmpl['sigoplimit'] == 20000)
        assert (tmpl['transactions'][0]['txid'] == txid)
        assert (tmpl['transactions'][0]['sigops'] == 2)

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = [
        ]  # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh
        wit_ids = [
        ]  # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(
                self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([
                OP_1,
                hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG
            ])
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'legacy')['address']
            #p2sh-ms address is not  p2sh-p2wsh-ms in tapyrus
            assert_equal(p2sh_ms_addr, script_to_p2sh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for v in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for i in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], False,
                                        Decimal("49.999")))
                    p2sh_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], True,
                                        Decimal("49.999")))

        self.nodes[0].generate(1, self.signblockprivkey)  #block 163
        sync_blocks(self.nodes)

        # Make sure all nodes recognize the transactions as theirs
        #assert_equal(self.nodes[0].getbalance(), balance_presetup - 60*50 + 20*Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 0)
        assert_equal(self.nodes[2].getbalance(), 0)

        self.nodes[0].generate(260, self.signblockprivkey)  #block 423
        sync_blocks(self.nodes)

        self.log.info("Verify that only P2SH endoced witness txs are accepted")
        self.success_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0],
                          True)  #block 424
        self.success_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0],
                          True)  #block 426

        self.log.info(
            "Verify unsigned p2sh witness txs without a redeem script are invalid"
        )
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_2][WIT_V1][0], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_2][WIT_V1][0], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_2][WIT_V0][1], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_2][WIT_V1][1], False)

        self.nodes[2].generate(4, self.signblockprivkey)  # blocks 428-431

        self.log.info(
            "Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        block = self.nodes[2].generate(
            1, self.signblockprivkey
        )  #block 432 (first block with new rules; 432 = 144 * 3)
        sync_blocks(self.nodes)
        assert_equal(len(self.nodes[2].getrawmempool()), 0)

        self.log.info(
            "Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_0][WIT_V0][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag",
                         p2sh_ids[NODE_0][WIT_V1][0], False)
        # unsigned with redeem script
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], False,
                          witness_script(False, self.pubkey[0]))
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], False,
                          witness_script(True, self.pubkey[0]))

        self.log.info(
            "Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag"
        )
        assert (self.nodes[2].getblock(block[0],
                                       False) == self.nodes[0].getblock(
                                           block[0], False))
        assert (self.nodes[1].getblock(block[0],
                                       False) == self.nodes[2].getblock(
                                           block[0], False))

        self.log.info("Verify witness txs without witness data are invalid")
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         wit_ids[NODE_2][WIT_V0][2], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag",
                         wit_ids[NODE_2][WIT_V1][2], False)

        self.success_mine(self.nodes[2],
                          p2sh_ids[NODE_2][WIT_V0][2],
                          sign=False,
                          redeem_script=witness_script(False, self.pubkey[2]))
        self.success_mine(self.nodes[2],
                          p2sh_ids[NODE_2][WIT_V1][2],
                          sign=False,
                          redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify sigops are counted in GBT with BIP141 rules")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)

        self.nodes[0].generate(
            1, self.signblockprivkey)  # Mine a block to clear the gbt cache

        self.log.info(
            "Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0],
                                find_spendable_utxo(self.nodes[0], 50),
                                self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert (tx.wit.is_null())  # This should not be a segwit input
        assert (txid1 in self.nodes[0].getrawmempool())

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(
            CTxOut(int(49.99 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(
            ToHex(tx), [], "ALL", self.options.scheme)['hex']
        assert_raises_rpc_error(-26, "mandatory-script-verify-flag-failed",
                                self.nodes[0].sendrawtransaction, tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert (tx.wit.is_null())

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b""))
        tx.vout.append(
            CTxOut(int(49.95 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        assert_raises_rpc_error(-26, "mandatory-script-verify-flag-failed",
                                self.nodes[0].sendrawtransaction, ToHex(tx))
        assert (tx.wit.is_null())

        # Now try calling getblocktemplate() without segwit support.
        template = self.nodes[0].getblocktemplate()

        # Check that tx1 is the only transaction of the 3 in the template.
        template_txids = [t['txid'] for t in template['transactions']]
        assert (txid1 in template_txids)

        # Check that running with segwit support results in all 3 being included.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert (txid1 in template_txids)

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1, self.signblockprivkey)

        self.log.info(
            "Verify behaviour of importaddress, addwitnessaddress and listunspent"
        )

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn")
        uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"]
        self.nodes[0].importprivkey(
            "cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR")
        compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"]
        assert ((self.nodes[0].getaddressinfo(
            uncompressed_spendable_address[0])['iscompressed'] == False))
        assert ((self.nodes[0].getaddressinfo(
            compressed_spendable_address[0])['iscompressed'] == True))

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = [
        ]  # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = [
        ]  # These outputs should be seen after importaddress
        solvable_after_importaddress = [
        ]  # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = [
        ]  # These outputs should be unsolvable after importaddress
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                compressed_spendable_address[0],
                uncompressed_solvable_address[0]
            ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], compressed_solvable_address[1]
             ])['address'])
        unknown_address = [
            "mtKKyoHabkk6e4ppT7NaM7THqPUt7AzPrT",
            "2NDP3jLWAFT8NDAiUa9qiE6oBt2awmMq7Dx"
        ]

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(
            2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([
            OP_2,
            hex_str_to_bytes(pubkeys[3]),
            hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG
        ])
        solvable_after_importaddress.append(
            CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                unseen_anytime.extend([
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh,
                    p2wpkh, p2sh_p2wpkh
                ])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend(
                    [bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
        unsolvable_address = [
            "mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V",
            "2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe",
            script_to_p2sh(op1),
            script_to_p2sh(op0)
        ]
        unsolvable_address_key = hex_str_to_bytes(
            "02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D"
        )
        unsolvablep2pkh = CScript([
            OP_DUP, OP_HASH160,
            hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG
        ])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(
            op1)  # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(
            op0
        )  # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(
            self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(
            spendable_after_importaddress + solvable_after_importaddress +
            unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bytes_to_hex_str(bare))
                importlist.append(
                    bytes_to_hex_str(CScript([OP_0, sha256(bare)])))
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([
                    OP_DUP, OP_HASH160,
                    hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG
                ])
                importlist.append(bytes_to_hex_str(p2pk))
                importlist.append(bytes_to_hex_str(p2pkh))
                importlist.append(
                    bytes_to_hex_str(CScript([OP_0, hash160(pubkey)])))
                importlist.append(
                    bytes_to_hex_str(CScript([OP_0, sha256(p2pk)])))
                importlist.append(
                    bytes_to_hex_str(CScript([OP_0, sha256(p2pkh)])))

        importlist.append(bytes_to_hex_str(unsolvablep2pkh))
        importlist.append(bytes_to_hex_str(unsolvablep2wshp2pkh))
        importlist.append(bytes_to_hex_str(op1))
        importlist.append(bytes_to_hex_str(p2wshop1))

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(
                -4,
                "The wallet already contains the private key for this address or script",
                self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(
            script_to_p2sh(op0))  # import OP_0 as address only
        self.nodes[0].importaddress(
            multisig_without_privkey_address)  # Test multisig_without_privkey

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        #self.mine_and_test_listunspent(unseen_anytime, 0)

        # addwitnessaddress should refuse to return a witness address if an uncompressed key is used
        # note that no witness address should be returned by unsolvable addresses
        for i in uncompressed_spendable_address + uncompressed_solvable_address + unknown_address + unsolvable_address:
            assert_raises_rpc_error(
                -4,
                "Public key or redeemscript not known to wallet, or the key is uncompressed",
                self.nodes[0].addwitnessaddress, i)

        for i in compressed_spendable_address + compressed_solvable_address:
            assert_raises_rpc_error(
                -4,
                "Public key or redeemscript not known to wallet, or the key is uncompressed",
                self.nodes[0].addwitnessaddress, i)

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        #self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH")
        uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"]
        self.nodes[0].importprivkey(
            "cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw")
        compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        spendable_after_addwitnessaddress = [
        ]  # These outputs should be seen after importaddress
        solvable_after_addwitnessaddress = [
        ]  # These outputs should be seen after importaddress but not spendable
        unseen_anytime = []  # These outputs should never be seen
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], uncompressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after addwitnessaddress
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # P2WSH multisig without private key are seen after addwitnessaddress
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(
            spendable_after_addwitnessaddress +
            solvable_after_addwitnessaddress + unseen_anytime, 0)

        # addwitnessaddress should refuse to return a witness address if an uncompressed key is used
        # note that a multisig address returned by addmultisigaddress is not solvable until it is added with importaddress
        # premature_witaddress are not accepted until the script is added with addwitnessaddress first
        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            assert_raises_rpc_error(
                -4,
                "Public key or redeemscript not known to wallet, or the key is uncompressed",
                self.nodes[0].addwitnessaddress, i)

        for i in premature_witaddress:
            assert_raises_rpc_error(
                -4,
                "Public key or redeemscript not known to wallet, or the key is uncompressed",
                self.nodes[0].addwitnessaddress, i)

        # after importaddress it should pass addwitnessaddress
        v = self.nodes[0].getaddressinfo(compressed_solvable_address[1])
        self.nodes[0].importaddress(v['hex'], "", False, True)
        for i in compressed_spendable_address + compressed_solvable_address + premature_witaddress:
            assert_raises_rpc_error(
                -4,
                "Public key or redeemscript not known to wallet, or the key is uncompressed",
                self.nodes[0].addwitnessaddress, i)

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_after_addwitnessaddress + spendable_anytime, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_after_addwitnessaddress + solvable_anytime, 1))
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        self.log.info("Verify bech32 addresses are not supported")
        v1_addr = program_to_witness(1, [3, 5])
        assert_raises_rpc_error(-5, "Invalid Tapyrus address",
                                self.nodes[0].createrawtransaction,
                                [getutxo(spendable_txid[0])], {v1_addr: 1})

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey(
            "cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
        self.nodes[0].importprivkey(
            "cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
        self.nodes[0].importprivkey(
            "91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
        self.nodes[0].importprivkey(
            "cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
        self.nodes[0].importprivkey(
            "cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
        self.nodes[0].importprivkey(
            "cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts is not supported
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                transaction = "0100000000e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                transaction = "0100000000e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            assert_raises_rpc_error(-22, "TX decode failed",
                                    self.nodes[1].fundrawtransaction,
                                    transaction)
Esempio n. 30
0
def FromHex(obj, hex_string):
    obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
    return obj
Esempio n. 31
0
 def from_hex(self, hexstring):
     f = BytesIO(hex_str_to_bytes(hexstring))
     self.deserialize(f)
Esempio n. 32
0
 def p2sh_address_to_script(self, v):
     bare = CScript(hex_str_to_bytes(v['hex']))
     p2sh = CScript(hex_str_to_bytes(v['scriptPubKey']))
     p2wsh = CScript([OP_0, sha256(bare)])
     p2sh_p2wsh = CScript([OP_HASH160, hash160(p2wsh), OP_EQUAL])
     return ([bare, p2sh, p2wsh, p2sh_p2wsh])
def tx_from_hex(hexstring):
    tx = CTransaction()
    f = BytesIO(hex_str_to_bytes(hexstring))
    tx.deserialize(f)
    return tx
Esempio n. 34
0
    def run_test(self):
        self.nodes[0].generate(161)  # block 161

        self.log.info(
            "Verify sigops are counted in GBT with pre-BIP141 rules before the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl['sizelimit'] == 1000000
        assert 'weightlimit' not in tmpl
        assert tmpl['sigoplimit'] == 20000
        assert tmpl['transactions'][0]['hash'] == txid
        assert tmpl['transactions'][0]['sigops'] == 2
        assert '!segwit' not in tmpl['rules']
        self.nodes[0].generate(1)  # block 162

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = [
        ]  # p2sh_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE embedded in p2sh
        wit_ids = [
        ]  # wit_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(
                self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([
                OP_1,
                hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG
            ])
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].addmultisigaddress(
                1, [self.pubkey[-1]], '', 'bech32')['address']
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for _ in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for _ in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], False,
                                        Decimal("49.999")))
                    p2sh_ids[n][v].append(
                        send_to_witness(v, self.nodes[0],
                                        find_spendable_utxo(self.nodes[0], 50),
                                        self.pubkey[n], True,
                                        Decimal("49.999")))

        self.nodes[0].generate(1)  # block 163
        self.sync_blocks()

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance(),
                     balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 20 * Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance(), 20 * Decimal("49.999"))

        self.nodes[0].generate(260)  # block 423
        self.sync_blocks()

        self.log.info(
            "Verify witness txs are skipped for mining before the fork")
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WPKH][0],
                       True)  # block 424
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WSH][0],
                       True)  # block 425
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WPKH][0],
                       True)  # block 426
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WSH][0],
                       True)  # block 427

        self.log.info(
            "Verify unsigned p2sh witness txs without a redeem script are invalid"
        )
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WPKH][1],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_2][P2WSH][1],
            sign=False)

        self.nodes[2].generate(4)  # blocks 428-431

        self.log.info(
            "Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        blockhash = self.nodes[2].generate(1)[
            0]  # block 432 (first block with new rules; 432 = 144 * 3)
        self.sync_blocks()
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info(
            "Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            wit_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            wit_ids[NODE_0][P2WSH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False)
        self.fail_accept(
            self.nodes[0],
            "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False)
        # unsigned with redeem script
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program hash mismatch)",
            p2sh_ids[NODE_0][P2WPKH][0],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[0]))
        self.fail_accept(
            self.nodes[0],
            "non-mandatory-script-verify-flag (Witness program was passed an empty witness)",
            p2sh_ids[NODE_0][P2WSH][0],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[0]))

        self.log.info(
            "Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag"
        )
        assert self.nodes[2].getblock(
            blockhash, False) != self.nodes[0].getblock(blockhash, False)
        assert self.nodes[1].getblock(blockhash,
                                      False) == self.nodes[2].getblock(
                                          blockhash, False)

        for tx_id in segwit_tx_list:
            tx = FromHex(CTransaction(),
                         self.nodes[2].gettransaction(tx_id)["hex"])
            assert self.nodes[2].getrawtransaction(
                tx_id, False, blockhash) != self.nodes[0].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[1].getrawtransaction(
                tx_id, False, blockhash) == self.nodes[2].getrawtransaction(
                    tx_id, False, blockhash)
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) != self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[1].getrawtransaction(
                tx_id, False,
                blockhash) == self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[0].getrawtransaction(
                tx_id, False,
                blockhash) == tx.serialize_without_witness().hex()

        # Coinbase contains the witness commitment nonce, check that RPC shows us
        coinbase_txid = self.nodes[2].getblock(blockhash)['tx'][0]
        coinbase_tx = self.nodes[2].gettransaction(txid=coinbase_txid,
                                                   verbose=True)
        witnesses = coinbase_tx["decoded"]["vin"][0]["txinwitness"]
        assert_equal(len(witnesses), 1)
        assert_is_hex_string(witnesses[0])
        assert_equal(witnesses[0], '00' * 32)

        self.log.info(
            "Verify witness txs without witness data are invalid after the fork"
        )
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            wit_ids[NODE_2][P2WPKH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            wit_ids[NODE_2][P2WSH][2],
            sign=False)
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program hash mismatch)',
            p2sh_ids[NODE_2][P2WPKH][2],
            sign=False,
            redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(
            self.nodes[2],
            'non-mandatory-script-verify-flag (Witness program was passed an empty witness)',
            p2sh_ids[NODE_2][P2WSH][2],
            sign=False,
            redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WPKH][0],
                          True)  # block 432
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WSH][0],
                          True)  # block 433
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WPKH][0],
                          True)  # block 434
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WSH][0],
                          True)  # block 435

        self.log.info(
            "Verify sigops are counted in GBT with BIP141 rules after the fork"
        )
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert tmpl[
            'sizelimit'] >= 3999577  # actual maximum size is lower due to minimum mandatory non-witness data
        assert tmpl['weightlimit'] == 4000000
        assert tmpl['sigoplimit'] == 80000
        assert tmpl['transactions'][0]['txid'] == txid
        assert tmpl['transactions'][0]['sigops'] == 8
        assert '!segwit' in tmpl['rules']

        self.nodes[0].generate(1)  # Mine a block to clear the gbt cache

        self.log.info(
            "Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0],
                                find_spendable_utxo(self.nodes[0], 50),
                                self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert tx.wit.is_null()  # This should not be a segwit input
        assert txid1 in self.nodes[0].getrawmempool()

        tx1_hex = self.nodes[0].gettransaction(txid1)['hex']
        tx1 = FromHex(CTransaction(), tx1_hex)

        # Check that hash and wtxid are properly reported in mempool entry (txid1)
        assert_equal(int(self.nodes[0].getmempoolentry(txid1)["hash"], 16),
                     tx1.calc_sha256(True))
        assert_equal(int(self.nodes[0].getmempoolentry(txid1)["wtxid"], 16),
                     tx1.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid1)
        assert_equal(self.nodes[0].getmempoolentry(txid1)["vsize"],
                     (self.nodes[0].getmempoolentry(txid1)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid1)["weight"],
            len(tx1.serialize_without_witness()) * 3 +
            len(tx1.serialize_with_witness()))

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(
            CTxOut(int(49.99 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert not tx.wit.is_null()

        # Check that hash and wtxid are properly reported in mempool entry (txid2)
        assert_equal(int(self.nodes[0].getmempoolentry(txid2)["hash"], 16),
                     tx.calc_sha256(True))
        assert_equal(int(self.nodes[0].getmempoolentry(txid2)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid2)
        assert_equal(self.nodes[0].getmempoolentry(txid2)["vsize"],
                     (self.nodes[0].getmempoolentry(txid2)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid2)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(
            CTxOut(int(49.95 * COIN),
                   CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(hexstring=ToHex(tx),
                                                 maxfeerate=0)
        assert tx.wit.is_null()
        assert txid3 in self.nodes[0].getrawmempool()

        # Check that getblocktemplate includes all transactions.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert txid1 in template_txids
        assert txid2 in template_txids
        assert txid3 in template_txids

        # Check that hash and wtxid are properly reported in mempool entry (txid3)
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["hash"], 16),
                     tx.calc_sha256(True))
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16),
                     tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid3)
        assert_equal(self.nodes[0].getmempoolentry(txid3)["vsize"],
                     (self.nodes[0].getmempoolentry(txid3)["weight"] + 3) // 4)
        assert_equal(
            self.nodes[0].getmempoolentry(txid3)["weight"],
            len(tx.serialize_without_witness()) * 3 +
            len(tx.serialize_with_witness()))

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1)

        self.log.info("Signing with all-segwit inputs reveals fee rate")
        addr = self.nodes[0].getnewaddress(address_type='p2sh-segwit')
        txid = self.nodes[0].sendtoaddress(addr, 1)
        tx = self.nodes[0].getrawtransaction(txid, True)
        n = -1
        value = -1
        for o in tx["vout"]:
            if o["scriptPubKey"]["addresses"][0] == addr:
                n = o["n"]
                value = Decimal(o["value"])
                break
        assert n > -1  # failure means we could not find the address in the outputs despite sending to it
        assert_equal(
            value, 1
        )  # failure means we got an unexpected amount of coins, despite trying to send 1
        fee = Decimal("0.00010000")
        value_out = value - fee
        self.nodes[0].generatetoaddress(1, self.nodes[0].getnewaddress())
        raw = self.nodes[0].createrawtransaction([{
            "txid": txid,
            "vout": n
        }], [{
            self.nodes[0].getnewaddress(): value_out
        }])
        signed = self.nodes[0].signrawtransactionwithwallet(raw)
        assert_equal(signed["complete"], True)
        txsize = self.nodes[0].decoderawtransaction(signed['hex'])['vsize']
        exp_feerate = 1000 * fee / Decimal(txsize)
        assert_approx(signed["feerate"], exp_feerate, Decimal("0.00000010"))
        # discrepancy = 100000000 * (exp_feerate - signed["feerate"])
        # assert -10 < discrepancy < 10
        assert_equal(Decimal(signed["fee"]), fee)

        self.log.info("Verify behaviour of importaddress and listunspent")

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn")
        uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"]
        self.nodes[0].importprivkey(
            "cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR")
        compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"]
        assert not self.nodes[0].getaddressinfo(
            uncompressed_spendable_address[0])['iscompressed']
        assert self.nodes[0].getaddressinfo(
            compressed_spendable_address[0])['iscompressed']

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = [
        ]  # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = [
        ]  # These outputs should be seen after importaddress
        solvable_after_importaddress = [
        ]  # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = [
        ]  # These outputs should be unsolvable after importaddress
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                compressed_spendable_address[0],
                uncompressed_solvable_address[0]
            ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], compressed_solvable_address[1]
             ])['address'])

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(
            2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([
            OP_2,
            hex_str_to_bytes(pubkeys[3]),
            hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG
        ])
        solvable_after_importaddress.append(
            CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])
                # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend(
                    [bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([
                    p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([
                    p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh,
                    p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
        unsolvable_address_key = hex_str_to_bytes(
            "02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D"
        )
        unsolvablep2pkh = CScript([
            OP_DUP, OP_HASH160,
            hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG
        ])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(
            op1)  # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(
            op0
        )  # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(
            self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(
            spendable_after_importaddress + solvable_after_importaddress +
            unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bare.hex())
                importlist.append(CScript([OP_0, sha256(bare)]).hex())
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([
                    OP_DUP, OP_HASH160,
                    hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG
                ])
                importlist.append(p2pk.hex())
                importlist.append(p2pkh.hex())
                importlist.append(CScript([OP_0, hash160(pubkey)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pk)]).hex())
                importlist.append(CScript([OP_0, sha256(p2pkh)]).hex())

        importlist.append(unsolvablep2pkh.hex())
        importlist.append(unsolvablep2wshp2pkh.hex())
        importlist.append(op1.hex())
        importlist.append(p2wshop1.hex())

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(
                -4,
                "The wallet already contains the private key for this address or script",
                self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(
            script_to_p2sh(op0))  # import OP_0 as address only
        self.nodes[0].importaddress(
            multisig_without_privkey_address)  # Test multisig_without_privkey

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        spendable_txid.append(
            self.mine_and_test_listunspent(
                spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(
            self.mine_and_test_listunspent(
                solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey(
            "927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH")
        uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"]
        self.nodes[0].importprivkey(
            "cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw")
        compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        unseen_anytime = []  # These outputs should never be seen
        solvable_anytime = [
        ]  # These outputs should be solvable after importpubkey
        unseen_anytime = []  # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                compressed_spendable_address[0]
            ])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2, [
                uncompressed_spendable_address[0],
                uncompressed_spendable_address[0]
            ])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_spendable_address[0]
             ])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_solvable_address[0], uncompressed_solvable_address[0]
             ])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(
            2,
            [compressed_spendable_address[0], compressed_solvable_address[0]
             ])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh,
                 p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [
                    p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh,
                    p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh
                ] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        v1_addr = program_to_witness(1, [3, 5])
        v1_tx = self.nodes[0].createrawtransaction(
            [getutxo(spendable_txid[0])], {v1_addr: 1})
        v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0],
                     v1_addr)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey(
            "cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
        self.nodes[0].importprivkey(
            "cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
        self.nodes[0].importprivkey(
            "91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
        self.nodes[0].importprivkey(
            "cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
        self.nodes[0].importprivkey(
            "cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
        self.nodes[0].importprivkey(
            "cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts works
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
            rawtxfund = self.nodes[1].signrawtransactionwithwallet(
                rawtxfund)["hex"]
            txid = self.nodes[1].sendrawtransaction(rawtxfund)

            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)

            # Assert it is properly saved
            self.restart_node(1)
            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"],
                         txid)
            assert_equal(
                self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"],
                txid)
Esempio n. 35
0
    def create_spam_block(self,
                          hashPrevBlock,
                          stakingPrevOuts,
                          height,
                          fStakeDoubleSpent=False,
                          fZPoS=False,
                          spendingPrevOuts={}):
        ''' creates a block to spam the network with
        :param   hashPrevBlock:      (hex string) hash of previous block
                 stakingPrevOuts:    ({COutPoint --> (int, int, int, str)} dictionary)
                                      map outpoints (to be used as staking inputs) to amount, block_time, nStakeModifier, hashStake
                 height:             (int) block height
                 fStakeDoubleSpent:  (bool) spend the coinstake input inside the block
                 fZPoS:              (bool) stake the block with zerocoin
                 spendingPrevOuts:   ({COutPoint --> (int, int, int, str)} dictionary)
                                      map outpoints (to be used as tx inputs) to amount, block_time, nStakeModifier, hashStake
        :return  block:              (CBlock) generated block
        '''

        # If not given inputs to create spam txes, use a copy of the staking inputs
        if len(spendingPrevOuts) == 0:
            spendingPrevOuts = dict(stakingPrevOuts)

        # Get current time
        current_time = int(time.time())
        nTime = current_time & 0xfffffff0

        # Create coinbase TX
        # Even if PoS blocks have empty coinbase vout, the height is required for the vin script
        coinbase = create_coinbase(height)
        coinbase.vout[0].nValue = 0
        coinbase.vout[0].scriptPubKey = b""
        coinbase.nTime = nTime
        coinbase.rehash()

        # Create Block with coinbase
        block = create_block(int(hashPrevBlock, 16), coinbase, nTime)

        # Find valid kernel hash - Create a new private key used for block signing.
        if not block.solve_stake(stakingPrevOuts):
            raise Exception("Not able to solve for any prev_outpoint")

        # Sign coinstake TX and add it to the block
        signed_stake_tx = self.sign_stake_tx(
            block, stakingPrevOuts[block.prevoutStake][0], fZPoS)
        block.vtx.append(signed_stake_tx)

        # Remove coinstake input prevout unless we want to try double spending in the same block.
        # Skip for zPoS as the spendingPrevouts are just regular UTXOs
        if not fZPoS and not fStakeDoubleSpent:
            del spendingPrevOuts[block.prevoutStake]

        # remove a random prevout from the list
        # (to randomize block creation if the same height is picked two times)
        if len(spendingPrevOuts) > 0:
            del spendingPrevOuts[choice(list(spendingPrevOuts))]

        # Create spam for the block. Sign the spendingPrevouts
        for outPoint in spendingPrevOuts:
            value_out = int(spendingPrevOuts[outPoint][0] -
                            self.DEFAULT_FEE * COIN)
            tx = create_transaction(outPoint,
                                    b"",
                                    value_out,
                                    nTime,
                                    scriptPubKey=CScript([
                                        self.block_sig_key.get_pubkey(),
                                        OP_CHECKSIG
                                    ]))
            # sign txes
            signed_tx_hex = self.node.signrawtransaction(
                bytes_to_hex_str(tx.serialize()))['hex']
            signed_tx = CTransaction()
            signed_tx.deserialize(BytesIO(hex_str_to_bytes(signed_tx_hex)))
            block.vtx.append(signed_tx)

        # Get correct MerkleRoot and rehash block
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()

        # Sign block with coinstake key and return it
        block.sign_block(self.block_sig_key)
        return block
Esempio n. 36
0
 def p2sh_address_to_script(self, v):
     bare = CScript(hex_str_to_bytes(v['hex']))
     p2sh = CScript(hex_str_to_bytes(v['scriptPubKey']))
     p2wsh = script_to_p2wsh_script(bare)
     p2sh_p2wsh = script_to_p2sh_script(p2wsh)
     return([bare, p2sh, p2wsh, p2sh_p2wsh])
Esempio n. 37
0
    def run_test(self):
        self.nodes[0].generate(161)  # block 161

        self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules before the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert(tmpl['sizelimit'] == 1000000)
        assert('weightlimit' not in tmpl)
        assert(tmpl['sigoplimit'] == 20000)
        assert(tmpl['transactions'][0]['txid'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 2)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert(tmpl['sizelimit'] == 1000000)
        assert('weightlimit' not in tmpl)
        assert(tmpl['sigoplimit'] == 20000)
        assert(tmpl['transactions'][0]['txid'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 2)
        self.nodes[0].generate(1)  # block 162

        balance_presetup = self.nodes[0].getbalance()['bitcoin']
        self.pubkey = []
        p2sh_ids = []  # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh
        wit_ids = []  # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([OP_1, hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG])
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'bech32')['address']
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for v in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for i in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999")))
                    p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999")))

        self.nodes[0].generate(1)  # block 163
        sync_blocks(self.nodes)

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance()['bitcoin'], balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance()['bitcoin'], 20 * Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance()['bitcoin'], 20 * Decimal("49.999"))

        self.nodes[0].generate(260)  # block 423
        sync_blocks(self.nodes)

        self.log.info("Verify witness txs are skipped for mining before the fork")
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0], True)  # block 424
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][0], True)  # block 425
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0], True)  # block 426
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][0], True)  # block 427

        self.log.info("Verify unsigned p2sh witness txs without a redeem script are invalid")
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V0][1], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V1][1], False)

        self.nodes[2].generate(4)  # blocks 428-431

        self.log.info("Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        blockhash = self.nodes[2].generate(1)[0]  # block 432 (first block with new rules; 432 = 144 * 3)
        sync_blocks(self.nodes)
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info("Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V0][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V1][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False)
        # unsigned with redeem script
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False, witness_script(False, self.pubkey[0]))
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False, witness_script(True, self.pubkey[0]))

        self.log.info("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag")
        assert(self.nodes[2].getblock(blockhash, False) != self.nodes[0].getblock(blockhash, False))
        assert(self.nodes[1].getblock(blockhash, False) == self.nodes[2].getblock(blockhash, False))

        for tx_id in segwit_tx_list:
            tx = FromHex(CTransaction(), self.nodes[2].gettransaction(tx_id)["hex"])
            assert(self.nodes[2].getrawtransaction(tx_id, False, blockhash) != self.nodes[0].getrawtransaction(tx_id, False, blockhash))
            assert(self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].getrawtransaction(tx_id, False, blockhash))
            assert(self.nodes[0].getrawtransaction(tx_id, False, blockhash) != self.nodes[2].gettransaction(tx_id)["hex"])
            assert(self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].gettransaction(tx_id)["hex"])
            assert(self.nodes[0].getrawtransaction(tx_id, False, blockhash) == bytes_to_hex_str(tx.serialize_without_witness()))

        self.log.info("Verify witness txs without witness data are invalid after the fork")
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', wit_ids[NODE_2][WIT_V0][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', wit_ids[NODE_2][WIT_V1][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', p2sh_ids[NODE_2][WIT_V0][2], sign=False, redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', p2sh_ids[NODE_2][WIT_V1][2], sign=False, redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True)  # block 432
        self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True)  # block 433
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True)  # block 434
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True)  # block 435

        self.log.info("Verify sigops are counted in GBT with BIP141 rules after the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert(tmpl['sizelimit'] >= 3999577)  # actual maximum size is lower due to minimum mandatory non-witness data
        assert(tmpl['weightlimit'] == 4000000)
        assert(tmpl['sigoplimit'] == 80000)
        assert(tmpl['transactions'][0]['txid'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 8)

        self.nodes[0].generate(1)  # Mine a block to clear the gbt cache

        self.log.info("Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert(tx.wit.is_null())  # This should not be a segwit input
        assert(txid1 in self.nodes[0].getrawmempool())

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(CTxOut(int(49.99 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx.vout.append(CTxOut(int(49.996*COIN - 49.99*COIN)))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert(not tx.wit.is_null())

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(CTxOut(int(49.95 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.vout.append(CTxOut(int(49.99*COIN - 49.95*COIN)))
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(ToHex(tx))
        assert(tx.wit.is_null())
        assert(txid3 in self.nodes[0].getrawmempool())

        # Check that getblocktemplate includes all transactions.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert(txid1 in template_txids)
        assert(txid2 in template_txids)
        assert(txid3 in template_txids)

        # Check that wtxid is properly reported in mempool entry
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16), tx.calc_sha256(True))

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1)

        self.log.info("Verify behaviour of importaddress and listunspent")

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey("92SMa2mHdcWeSRxYL3n2mcv6vyxmvmQ326fpiDffnHwu1bbF6rB")
        uncompressed_spendable_address = ["2drVNrQ6G7UhTrV5hHzBnh1wPQ4P1SYwEYm"]
        self.nodes[0].importprivkey("cW6dVxPDzWUbs16ExyD6NkLDBtqwCB82o99PT95oYprGQ6Ao11YK")
        compressed_spendable_address = ["2dmiAZsM5F4TS1PCUKW2t3UYw6FupXPUmRS"]
        assert not self.nodes[0].getaddressinfo(uncompressed_spendable_address[0])['iscompressed']
        assert self.nodes[0].getaddressinfo(compressed_spendable_address[0])['iscompressed']

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = []                      # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = []          # These outputs should be seen after importaddress
        solvable_after_importaddress = []           # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = []         # These outputs should be unsolvable after importaddress
        solvable_anytime = []                       # These outputs should be solvable after importpubkey
        unseen_anytime = []                         # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])['address'])

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([OP_2, hex_str_to_bytes(pubkeys[3]), hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG])
        solvable_after_importaddress.append(CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])
                # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
        unsolvable_address_key = hex_str_to_bytes("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D")
        unsolvablep2pkh = CScript([OP_DUP, OP_HASH160, hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(op1)  # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(op0)  # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bytes_to_hex_str(bare))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(bare)])))
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([OP_DUP, OP_HASH160, hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG])
                importlist.append(bytes_to_hex_str(p2pk))
                importlist.append(bytes_to_hex_str(p2pkh))
                importlist.append(bytes_to_hex_str(CScript([OP_0, hash160(pubkey)])))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pk)])))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pkh)])))

        importlist.append(bytes_to_hex_str(unsolvablep2pkh))
        importlist.append(bytes_to_hex_str(unsolvablep2wshp2pkh))
        importlist.append(bytes_to_hex_str(op1))
        importlist.append(bytes_to_hex_str(p2wshop1))

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(-4, "The wallet already contains the private key for this address or script", self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(script_to_p2sh(op0))  # import OP_0 as address only
        self.nodes[0].importaddress(multisig_without_privkey_address)  # Test multisig_without_privkey

        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey("91oxj3Pfsh9gwHMVf2f9jQviNwcUWhk6ik1prHYLcG8qxtD6ois")
        uncompressed_spendable_address = ["2dmXP31eCGJmej1TXJozZtQoCS4ccNHw33D"]
        self.nodes[0].importprivkey("cVf3aYYKKSJZZ6v17jgqkBpGfLjhcZg3cUnqpbghwdX1QVStrN63")
        compressed_spendable_address = ["2doZfDfrmngfWw3tWz9Z8MpNvHFPhDjzGaQ"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        unseen_anytime = []                         # These outputs should never be seen
        solvable_anytime = []                       # These outputs should be solvable after importpubkey
        unseen_anytime = []                         # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        v1_addr = program_to_witness(1, [3, 5])
        v1_tx = self.nodes[0].createrawtransaction([getutxo(spendable_txid[0])], {v1_addr: 1})
        v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0], v1_addr)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
        self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
        self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
        self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
        self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
        self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts works
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                # original btc tx:
                # 01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000
                transaction = "0100000000000101230f4f5d4b7c6fa845806ee4f67713459e1b69e8e60fcee2e4940c7a0d5de1b2010000000005f5e100002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                # original btc tx:
                # 01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000
                transaction = "0100000000000101230f4f5d4b7c6fa845806ee4f67713459e1b69e8e60fcee2e4940c7a0d5de1b2010000000005f5e1000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
            rawtxfund = self.nodes[1].signrawtransactionwithwallet(rawtxfund)["hex"]
            txid = self.nodes[1].sendrawtransaction(rawtxfund)

            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
            assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)

            # Assert it is properly saved
            self.stop_node(1)
            self.start_node(1)
            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
            assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)
Esempio n. 38
0
    def run_test(self):
        self.url = urllib.parse.urlparse(self.nodes[0].url)
        self.log.info("Mine blocks and send Usdecoin to node 1")

        # Random address so node1's balance doesn't increase
        not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ"

        self.nodes[0].generate(1)
        self.sync_all()
        self.nodes[1].generatetoaddress(100, not_related_address)
        self.sync_all()

        assert_equal(self.nodes[0].getbalance(), 50)

        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        self.sync_all()
        self.nodes[1].generatetoaddress(1, not_related_address)
        self.sync_all()
        bb_hash = self.nodes[0].getbestblockhash()

        assert_equal(self.nodes[1].getbalance(), Decimal("0.1"))

        self.log.info("Load the transaction using the /tx URI")

        json_obj = self.test_rest_request("/tx/{}".format(txid))
        spent = (
            json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']
        )  # get the vin to later check for utxo (should be spent by then)
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        self.log.info("Query an unspent TXO using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))

        # Check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is one utxo
        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1'))

        self.log.info("Query a spent TXO using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))

        # Check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is no utxo in the response because this outpoint has been spent
        assert_equal(len(json_obj['utxos']), 0)

        # Check bitmap
        assert_equal(json_obj['bitmap'], "0")

        self.log.info("Query two TXOs using the /getutxos URI")

        json_obj = self.test_rest_request(
            "/getutxos/{}-{}/{}-{}".format(*(spending + spent)))

        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['bitmap'], "10")

        self.log.info(
            "Query the TXOs using the /getutxos URI with a binary response")

        bin_request = b'\x01\x02'
        for txid, n in [spending, spent]:
            bin_request += hex_str_to_bytes(txid)
            bin_request += pack("i", n)

        bin_response = self.test_rest_request("/getutxos",
                                              http_method='POST',
                                              req_type=ReqType.BIN,
                                              body=bin_request,
                                              ret_type=RetType.BYTES)
        output = BytesIO(bin_response)
        chain_height, = unpack("i", output.read(4))
        response_hash = binascii.hexlify(output.read(32)[::-1]).decode('ascii')

        assert_equal(
            bb_hash, response_hash
        )  # check if getutxo's chaintip during calculation was fine
        assert_equal(chain_height, 102)  # chain height must be 102

        self.log.info("Test the /getutxos URI with and without /checkmempool")
        # Create a transaction, check that it's found with /checkmempool, but
        # not found without. Then confirm the transaction and check that it's
        # found with or without /checkmempool.

        # do a tx and don't sync
        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        json_obj = self.test_rest_request("/tx/{}".format(txid))
        # get the spent output to later check for utxo (should be spent by then)
        spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout'])
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 0)

        json_obj = self.test_rest_request(
            "/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request(
            "/getutxos/checkmempool/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 0)

        self.nodes[0].generate(1)
        self.sync_all()

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request(
            "/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        # Do some invalid requests
        self.test_rest_request("/getutxos",
                               http_method='POST',
                               req_type=ReqType.JSON,
                               body='{"checkmempool',
                               status=400,
                               ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos",
                               http_method='POST',
                               req_type=ReqType.BIN,
                               body='{"checkmempool',
                               status=400,
                               ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos/checkmempool",
                               http_method='POST',
                               req_type=ReqType.JSON,
                               status=400,
                               ret_type=RetType.OBJ)

        # Test limits
        long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri),
                               http_method='POST',
                               status=400,
                               ret_type=RetType.OBJ)

        long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri),
                               http_method='POST',
                               status=200)

        self.nodes[0].generate(
            1)  # generate block to not affect upcoming tests
        self.sync_all()

        self.log.info("Test the /block and /headers URIs")
        bb_hash = self.nodes[0].getbestblockhash()

        # Check binary format
        response = self.test_rest_request("/block/{}".format(bb_hash),
                                          req_type=ReqType.BIN,
                                          ret_type=RetType.OBJ)
        assert_greater_than(int(response.getheader('content-length')), 80)
        response_bytes = response.read()

        # Compare with block header
        response_header = self.test_rest_request(
            "/headers/1/{}".format(bb_hash),
            req_type=ReqType.BIN,
            ret_type=RetType.OBJ)
        assert_equal(int(response_header.getheader('content-length')), 80)
        response_header_bytes = response_header.read()
        assert_equal(response_bytes[:80], response_header_bytes)

        # Check block hex format
        response_hex = self.test_rest_request("/block/{}".format(bb_hash),
                                              req_type=ReqType.HEX,
                                              ret_type=RetType.OBJ)
        assert_greater_than(int(response_hex.getheader('content-length')), 160)
        response_hex_bytes = response_hex.read().strip(b'\n')
        assert_equal(binascii.hexlify(response_bytes), response_hex_bytes)

        # Compare with hex block header
        response_header_hex = self.test_rest_request(
            "/headers/1/{}".format(bb_hash),
            req_type=ReqType.HEX,
            ret_type=RetType.OBJ)
        assert_greater_than(
            int(response_header_hex.getheader('content-length')), 160)
        response_header_hex_bytes = response_header_hex.read(160)
        assert_equal(binascii.hexlify(response_bytes[:80]),
                     response_header_hex_bytes)

        # Check json format
        block_json_obj = self.test_rest_request("/block/{}".format(bb_hash))
        assert_equal(block_json_obj['hash'], bb_hash)

        # Compare with json block header
        json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash))
        assert_equal(len(json_obj),
                     1)  # ensure that there is one header in the json response
        assert_equal(json_obj[0]['hash'],
                     bb_hash)  # request/response hash should be the same

        # Compare with normal RPC block response
        rpc_block_json = self.nodes[0].getblock(bb_hash)
        for key in [
                'hash', 'confirmations', 'height', 'version', 'merkleroot',
                'time', 'nonce', 'bits', 'difficulty', 'chainwork',
                'previousblockhash'
        ]:
            assert_equal(json_obj[0][key], rpc_block_json[key])

        # See if we can get 5 headers in one response
        self.nodes[1].generate(5)
        self.sync_all()
        json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash))
        assert_equal(len(json_obj), 5)  # now we should have 5 header objects

        self.log.info("Test the /tx URI")

        tx_hash = block_json_obj['tx'][0]['txid']
        json_obj = self.test_rest_request("/tx/{}".format(tx_hash))
        assert_equal(json_obj['txid'], tx_hash)

        # Check hex format response
        hex_response = self.test_rest_request("/tx/{}".format(tx_hash),
                                              req_type=ReqType.HEX,
                                              ret_type=RetType.OBJ)
        assert_greater_than_or_equal(
            int(hex_response.getheader('content-length')),
            json_obj['size'] * 2)

        self.log.info("Test tx inclusion in the /mempool and /block URIs")

        # Make 3 tx and mine them on node 1
        txs = []
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        self.sync_all()

        # Check that there are exactly 3 transactions in the TX memory pool before generating the block
        json_obj = self.test_rest_request("/mempool/info")
        assert_equal(json_obj['size'], 3)
        # the size of the memory pool should be greater than 3x ~100 bytes
        assert_greater_than(json_obj['bytes'], 300)

        # Check that there are our submitted transactions in the TX memory pool
        json_obj = self.test_rest_request("/mempool/contents")
        for i, tx in enumerate(txs):
            assert tx in json_obj
            assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2])
            assert_equal(json_obj[tx]['depends'], txs[i - 1:i])

        # Now mine the transactions
        newblockhash = self.nodes[1].generate(1)
        self.sync_all()

        # Check if the 3 tx show up in the new block
        json_obj = self.test_rest_request("/block/{}".format(newblockhash[0]))
        non_coinbase_txs = {
            tx['txid']
            for tx in json_obj['tx'] if 'coinbase' not in tx['vin'][0]
        }
        assert_equal(non_coinbase_txs, set(txs))

        # Check the same but without tx details
        json_obj = self.test_rest_request("/block/notxdetails/{}".format(
            newblockhash[0]))
        for tx in txs:
            assert tx in json_obj['tx']

        self.log.info("Test the /chaininfo URI")

        bb_hash = self.nodes[0].getbestblockhash()

        json_obj = self.test_rest_request("/chaininfo")
        assert_equal(json_obj['bestblockhash'], bb_hash)
Esempio n. 39
0
    def run_test(self):
        node = self.nodes[0]

        # Generate 6 keys.
        rawkeys = []
        pubkeys = []
        for i in range(6):
            raw_key = CECKey()
            raw_key.set_secretbytes(('privkey%d' % i).encode('ascii'))
            rawkeys.append(raw_key)
        pubkeys = [CPubKey(key.get_pubkey()) for key in rawkeys]

        # Create a 4-of-6 multi-sig wallet with CLTV.
        height = 210
        redeem_script = CScript(
            [CScriptNum(height), OP_CHECKLOCKTIMEVERIFY, OP_DROP
             ]  # CLTV (lock_time >= 210)
            + [OP_4] + pubkeys + [OP_6, OP_CHECKMULTISIG])  # multi-sig
        hex_redeem_script = bytes_to_hex_str(redeem_script)
        p2sh_address = script_to_p2sh(redeem_script, main=False)

        # Send 1 coin to the mult-sig wallet.
        txid = node.sendtoaddress(p2sh_address, 1.0)
        raw_tx = node.getrawtransaction(txid, True)
        try:
            node.importaddress(hex_redeem_script, 'cltv', True, True)
        except Exception:
            pass
        assert_equal(
            sig(node.getreceivedbyaddress(p2sh_address, 0) - Decimal(1.0)), 0)

        # Mine one block to confirm the transaction.
        node.generate(1)  # block 201
        assert_equal(
            sig(node.getreceivedbyaddress(p2sh_address, 1) - Decimal(1.0)), 0)

        # Try to spend the coin.
        addr_to = node.getnewaddress('')

        # (1) Find the UTXO
        for vout in raw_tx['vout']:
            if vout['scriptPubKey']['addresses'] == [p2sh_address]:
                vout_n = vout['n']
        hex_script_pubkey = raw_tx['vout'][vout_n]['scriptPubKey']['hex']
        value = raw_tx['vout'][vout_n]['value']

        # (2) Create a tx
        inputs = [{
            "txid": txid,
            "vout": vout_n,
            "scriptPubKey": hex_script_pubkey,
            "redeemScript": hex_redeem_script,
            "amount": value,
        }]
        outputs = {addr_to: 0.999}
        lock_time = height
        hex_spend_raw_tx = node.createrawtransaction(inputs, outputs,
                                                     lock_time)
        hex_funding_raw_tx = node.getrawtransaction(txid, False)

        # (3) Try to sign the spending tx.
        tx0 = CTransaction()
        tx0.deserialize(io.BytesIO(hex_str_to_bytes(hex_funding_raw_tx)))
        tx1 = CTransaction()
        tx1.deserialize(io.BytesIO(hex_str_to_bytes(hex_spend_raw_tx)))
        self.sign_tx(tx1, tx0, vout_n, redeem_script, 0,
                     rawkeys[:4])  # Sign with key[0:4]

        # Mine some blocks to pass the lock time.
        node.generate(10)

        # Spend the CLTV multi-sig coins.
        raw_tx1 = tx1.serialize()
        hex_raw_tx1 = bytes_to_hex_str(raw_tx1)
        node.sendrawtransaction(hex_raw_tx1)

        # Check the tx is accepted by mempool but not confirmed.
        assert_equal(
            sig(node.getreceivedbyaddress(addr_to, 0) - Decimal(0.999)), 0)
        assert_equal(sig(node.getreceivedbyaddress(addr_to, 1)), 0)

        # Mine a block to confirm the tx.
        node.generate(1)
        assert_equal(
            sig(node.getreceivedbyaddress(addr_to, 1) - Decimal(0.999)), 0)
Esempio n. 40
0
    def run_test(self):

        print("Testing wallet secret recovery")
        self.test_wallet_recovery()

        print("Test blech32 python roundtrip")
        # blech/bech are aliased, both are blech32
        for addrtype in ["bech32", "blech32"]:
            addr_to_rt = self.nodes[0].getnewaddress("", addrtype)
            hrp = addr_to_rt[:2]
            assert_equal(hrp, "el")
            (witver, witprog) = decode(hrp, addr_to_rt)
            assert_equal(encode(hrp, witver, witprog), addr_to_rt)

        # Test that "blech32" gives a blinded segwit address.
        blech32_addr = self.nodes[0].getnewaddress("", "blech32")
        blech32_addr_info = self.nodes[0].getaddressinfo(blech32_addr)
        assert_equal(blech32_addr_info["iswitness"], True)
        assert_equal(blech32_addr_info["confidential"], blech32_addr)

        print("General Confidential tests")
        # Running balances
        node0 = self.nodes[0].getbalance()["bitcoin"]
        assert_equal(node0,
                     21000000)  # just making sure initialfreecoins is working
        node1 = 0
        node2 = 0

        self.nodes[0].generate(101)
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(),
                                           node0, "", "", True)
        self.nodes[0].generate(101)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, False, "bitcoin"),
                     node1)
        assert_equal(self.nodes[2].getbalance("*", 1, False, False, "bitcoin"),
                     node2)

        # Send 3 BTC from 0 to a new unconfidential address of 2 with
        # the sendtoaddress call
        address = self.nodes[2].getnewaddress()
        unconfidential_address = self.nodes[2].validateaddress(
            address)["unconfidential"]
        value0 = 3
        self.nodes[0].sendtoaddress(unconfidential_address, value0)
        self.nodes[0].generate(101)
        self.sync_all()

        node0 = node0 - value0
        node2 = node2 + value0

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, False, "bitcoin"),
                     node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Send 5 BTC from 0 to a new address of 2 with the sendtoaddress call
        address2 = self.nodes[2].getnewaddress()
        unconfidential_address2 = self.nodes[2].validateaddress(
            address2)["unconfidential"]
        value1 = 5
        confidential_tx_id = self.nodes[0].sendtoaddress(address2, value1)
        self.nodes[0].generate(101)
        self.sync_all()

        node0 = node0 - value1
        node2 = node2 + value1

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, False, "bitcoin"),
                     node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Send 7 BTC from 0 to the unconfidential address of 2 and 11 BTC to the
        # confidential address using the raw transaction interface
        change_address = self.nodes[0].getnewaddress()
        value2 = 7
        value3 = 11
        value23 = value2 + value3
        unspent = self.nodes[0].listunspent(1, 9999999, [], True,
                                            {"asset": "bitcoin"})
        unspent = [i for i in unspent if i['amount'] > value23]
        assert_equal(len(unspent), 1)
        fee = Decimal('0.0001')
        tx = self.nodes[0].createrawtransaction(
            [{
                "txid": unspent[0]["txid"],
                "vout": unspent[0]["vout"],
                "nValue": unspent[0]["amount"]
            }], {
                unconfidential_address: value2,
                address2: value3,
                change_address: unspent[0]["amount"] - value2 - value3 - fee,
                "fee": fee
            })
        tx = self.nodes[0].blindrawtransaction(tx)
        tx_signed = self.nodes[0].signrawtransactionwithwallet(tx)
        raw_tx_id = self.nodes[0].sendrawtransaction(tx_signed['hex'])
        self.nodes[0].generate(101)
        self.sync_all()

        node0 -= (value2 + value3)
        node2 += value2 + value3

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, False, "bitcoin"),
                     node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Check 2's listreceivedbyaddress
        received_by_address = self.nodes[2].listreceivedbyaddress(
            0, False, False, "", "bitcoin")
        validate_by_address = [(address2, value1 + value3),
                               (address, value0 + value2)]
        assert_equal(
            sorted([(ele['address'], ele['amount'])
                    for ele in received_by_address],
                   key=lambda t: t[0]),
            sorted(validate_by_address, key=lambda t: t[0]))
        received_by_address = self.nodes[2].listreceivedbyaddress(
            0, False, False, "")
        validate_by_address = [(address2, {
            "bitcoin": value1 + value3
        }), (address, {
            "bitcoin": value0 + value2
        })]
        assert_equal(
            sorted([(ele['address'], ele['amount'])
                    for ele in received_by_address],
                   key=lambda t: t[0]),
            sorted(validate_by_address, key=lambda t: t[0]))

        # Give an auditor (node 1) a blinding key to allow her to look at
        # transaction values
        self.nodes[1].importaddress(address2)
        received_by_address = self.nodes[1].listreceivedbyaddress(
            1, False, True)
        #Node sees nothing unless it understands the values
        assert_equal(len(received_by_address), 0)
        assert_equal(
            len(self.nodes[1].listunspent(1, 9999999, [], True,
                                          {"asset": "bitcoin"})), 0)

        # Import the blinding key
        blindingkey = self.nodes[2].dumpblindingkey(address2)
        self.nodes[1].importblindingkey(address2, blindingkey)
        # Check the auditor's gettransaction and listreceivedbyaddress
        # Needs rescan to update wallet txns
        conf_tx = self.nodes[1].gettransaction(confidential_tx_id, True)
        assert_equal(conf_tx['amount']["bitcoin"], value1)

        # Make sure wallet can now deblind part of transaction
        deblinded_tx = self.nodes[1].unblindrawtransaction(
            conf_tx['hex'])['hex']
        for output in self.nodes[1].decoderawtransaction(deblinded_tx)["vout"]:
            if "value" in output and output["scriptPubKey"]["type"] != "fee":
                assert_equal(
                    output["scriptPubKey"]["addresses"][0],
                    self.nodes[1].validateaddress(address2)['unconfidential'])
                found_unblinded = True
        assert found_unblinded

        assert_equal(
            self.nodes[1].gettransaction(raw_tx_id, True)['amount']["bitcoin"],
            value3)
        assert_equal(
            self.nodes[1].gettransaction(raw_tx_id, True, False,
                                         "bitcoin")['amount'], value3)
        list_unspent = self.nodes[1].listunspent(1, 9999999, [], True,
                                                 {"asset": "bitcoin"})
        assert_equal(list_unspent[0]['amount'] + list_unspent[1]['amount'],
                     value1 + value3)
        received_by_address = self.nodes[1].listreceivedbyaddress(
            1, False, True)
        assert_equal(len(received_by_address), 1)
        assert_equal((received_by_address[0]['address'],
                      received_by_address[0]['amount']['bitcoin']),
                     (unconfidential_address2, value1 + value3))

        # Spending a single confidential output and sending it to a
        # unconfidential output is not possible with CT. Test the
        # correct behavior of blindrawtransaction.
        unspent = self.nodes[0].listunspent(1, 9999999, [], True,
                                            {"asset": "bitcoin"})
        unspent = [i for i in unspent if i['amount'] > value23]
        assert_equal(len(unspent), 1)
        tx = self.nodes[0].createrawtransaction(
            [{
                "txid": unspent[0]["txid"],
                "vout": unspent[0]["vout"],
                "nValue": unspent[0]["amount"]
            }], {
                unconfidential_address: unspent[0]["amount"] - fee,
                "fee": fee
            })

        # Test that blindrawtransaction adds an OP_RETURN output to balance blinders
        temptx = self.nodes[0].blindrawtransaction(tx)
        decodedtx = self.nodes[0].decoderawtransaction(temptx)
        assert_equal(decodedtx["vout"][-1]["scriptPubKey"]["asm"], "OP_RETURN")
        assert_equal(len(decodedtx["vout"]), 3)

        # Create same transaction but with a change/dummy output.
        # It should pass the blinding step.
        value4 = 17
        change_address = self.nodes[0].getrawchangeaddress()
        tx = self.nodes[0].createrawtransaction(
            [{
                "txid": unspent[0]["txid"],
                "vout": unspent[0]["vout"],
                "nValue": unspent[0]["amount"]
            }], {
                unconfidential_address: value4,
                change_address: unspent[0]["amount"] - value4 - fee,
                "fee": fee
            })
        tx = self.nodes[0].blindrawtransaction(tx)
        tx_signed = self.nodes[0].signrawtransactionwithwallet(tx)
        txid = self.nodes[0].sendrawtransaction(tx_signed['hex'])
        decodedtx = self.nodes[0].decoderawtransaction(tx_signed["hex"])
        self.nodes[0].generate(101)
        self.sync_all()

        unblindfound = False
        for i in range(len(decodedtx["vout"])):
            txout = self.nodes[0].gettxout(txid, i)
            if txout is not None and "asset" in txout:
                unblindfound = True

        if unblindfound == False:
            raise Exception(
                "No unconfidential output detected when one should exist")

        node0 -= value4
        node2 += value4
        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, False, "bitcoin"),
                     node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Testing wallet's ability to deblind its own outputs
        addr = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        # We add two to-blind outputs, fundraw adds an already-blinded change output
        # If we only add one, the newly blinded will be 0-blinded because input = -output
        raw = self.nodes[0].createrawtransaction([], {
            addr: Decimal('1.1'),
            addr2: 1
        })
        funded = self.nodes[0].fundrawtransaction(raw)
        # fund again to make sure no blinded outputs were created (would fail)
        funded = self.nodes[0].fundrawtransaction(funded["hex"])
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        # blind again to make sure we know output blinders
        blinded2 = self.nodes[0].blindrawtransaction(blinded)
        # then sign and send
        signed = self.nodes[0].signrawtransactionwithwallet(blinded2)
        self.nodes[0].sendrawtransaction(signed["hex"])

        # Aside: Check all outputs after fundraw are properly marked for blinding
        fund_decode = self.nodes[0].decoderawtransaction(funded["hex"])
        for output in fund_decode["vout"][:-1]:
            assert "asset" in output
            assert "value" in output
            assert output["scriptPubKey"]["type"] != "fee"
            assert output["commitmentnonce_fully_valid"]
        assert fund_decode["vout"][-1]["scriptPubKey"]["type"] == "fee"
        assert not fund_decode["vout"][-1]["commitmentnonce_fully_valid"]

        # Also check that all fundraw outputs marked for blinding are blinded later
        for blind_tx in [blinded, blinded2]:
            blind_decode = self.nodes[0].decoderawtransaction(blind_tx)
            for output in blind_decode["vout"][:-1]:
                assert "asset" not in output
                assert "value" not in output
                assert output["scriptPubKey"]["type"] != "fee"
                assert output["commitmentnonce_fully_valid"]
            assert blind_decode["vout"][-1]["scriptPubKey"]["type"] == "fee"
            assert "asset" in blind_decode["vout"][-1]
            assert "value" in blind_decode["vout"][-1]
            assert not blind_decode["vout"][-1]["commitmentnonce_fully_valid"]

        # Check createblindedaddress functionality
        blinded_addr = self.nodes[0].getnewaddress()
        validated_addr = self.nodes[0].validateaddress(blinded_addr)
        blinding_pubkey = self.nodes[0].validateaddress(
            blinded_addr)["confidential_key"]
        blinding_key = self.nodes[0].dumpblindingkey(blinded_addr)
        assert_equal(
            blinded_addr, self.nodes[1].createblindedaddress(
                validated_addr["unconfidential"], blinding_pubkey))

        # If a blinding key is over-ridden by a newly imported one, funds may be unaccounted for
        new_addr = self.nodes[0].getnewaddress()
        new_validated = self.nodes[0].validateaddress(new_addr)
        self.nodes[2].sendtoaddress(new_addr, 1)
        self.sync_all()
        diff_blind = self.nodes[1].createblindedaddress(
            new_validated["unconfidential"], blinding_pubkey)
        assert_equal(
            len(self.nodes[0].listunspent(0, 0,
                                          [new_validated["unconfidential"]])),
            1)
        self.nodes[0].importblindingkey(diff_blind, blinding_key)
        # CT values for this wallet transaction  have been cached via importblindingkey
        # therefore result will be same even though we change blinding keys
        assert_equal(
            len(self.nodes[0].listunspent(0, 0,
                                          [new_validated["unconfidential"]])),
            1)

        # Confidential Assets Tests

        print("Assets tests...")

        # Bitcoin is the first issuance
        assert_equal(self.nodes[0].listissuances()[0]["assetlabel"], "bitcoin")
        assert_equal(len(self.nodes[0].listissuances()), 1)

        # Unblinded issuance of asset
        issued = self.nodes[0].issueasset(1, 1, False)
        self.nodes[0].reissueasset(issued["asset"], 1)

        # Compare resulting fields with getrawtransaction
        raw_details = self.nodes[0].getrawtransaction(issued["txid"], 1)
        assert_equal(
            issued["entropy"],
            raw_details["vin"][issued["vin"]]["issuance"]["assetEntropy"])
        assert_equal(issued["asset"],
                     raw_details["vin"][issued["vin"]]["issuance"]["asset"])
        assert_equal(issued["token"],
                     raw_details["vin"][issued["vin"]]["issuance"]["token"])

        self.nodes[0].generate(1)
        self.sync_all()

        issued2 = self.nodes[0].issueasset(2, 1)
        test_asset = issued2["asset"]
        assert_equal(self.nodes[0].getwalletinfo()['balance'][test_asset],
                     Decimal(2))
        assert test_asset not in self.nodes[1].getwalletinfo()['balance']

        # Assets balance checking, note that accounts are completely ignored because
        # balance queries with accounts are horrifically broken upstream
        assert_equal(self.nodes[0].getbalance("*", 0, False, False, "bitcoin"),
                     self.nodes[0].getbalance("*", 0, False, False, "bitcoin"))
        assert_equal(self.nodes[0].getbalance("*", 0, False, False)["bitcoin"],
                     self.nodes[0].getbalance("*", 0, False, False, "bitcoin"))
        assert_equal(self.nodes[0].getwalletinfo()['balance']['bitcoin'],
                     self.nodes[0].getbalance("*", 0, False, False, "bitcoin"))

        # Send some bitcoin and other assets over as well to fund wallet
        addr = self.nodes[2].getnewaddress()
        txid = self.nodes[0].sendtoaddress(addr, 5)
        # Make sure we're doing 52 bits of hiding which covers 21M BTC worth
        assert_equal(
            self.nodes[0].getrawtransaction(txid, 1)["vout"][0]["ct-bits"], 52)
        self.nodes[0].sendmany("", {
            addr: 1,
            self.nodes[2].getnewaddress(): 13
        }, 0, "", [], False, 1, "UNSET", {addr: test_asset})

        self.sync_all()

        # Should have exactly 1 in change(trusted, though not confirmed) after sending one off
        assert_equal(
            self.nodes[0].getbalance("*", 0, False, False, test_asset), 1)
        assert_equal(self.nodes[2].getunconfirmedbalance()[test_asset],
                     Decimal(1))

        b_utxos = self.nodes[2].listunspent(0, 0, [], True,
                                            {"asset": "bitcoin"})
        t_utxos = self.nodes[2].listunspent(0, 0, [], True,
                                            {"asset": test_asset})

        assert_equal(len(self.nodes[2].listunspent(0, 0, [])),
                     len(b_utxos) + len(t_utxos))

        # Now craft a blinded transaction via raw api
        rawaddrs = []
        for i in range(2):
            rawaddrs.append(self.nodes[1].getnewaddress())
        raw_assets = self.nodes[2].createrawtransaction(
            [{
                "txid": b_utxos[0]['txid'],
                "vout": b_utxos[0]['vout'],
                "nValue": b_utxos[0]['amount']
            }, {
                "txid": b_utxos[1]['txid'],
                "vout": b_utxos[1]['vout'],
                "nValue": b_utxos[1]['amount'],
                "asset": b_utxos[1]['asset']
            }, {
                "txid": t_utxos[0]['txid'],
                "vout": t_utxos[0]['vout'],
                "nValue": t_utxos[0]['amount'],
                "asset": t_utxos[0]['asset']
            }], {
                rawaddrs[1]:
                Decimal(t_utxos[0]['amount']),
                rawaddrs[0]:
                Decimal(b_utxos[0]['amount'] + b_utxos[1]['amount'] -
                        Decimal("0.01")),
                "fee":
                Decimal("0.01")
            }, 0, False, {
                rawaddrs[0]: b_utxos[0]['asset'],
                rawaddrs[1]: t_utxos[0]['asset'],
                "fee": b_utxos[0]['asset']
            })

        # Sign unblinded, then blinded
        signed_assets = self.nodes[2].signrawtransactionwithwallet(raw_assets)
        blind_assets = self.nodes[2].blindrawtransaction(raw_assets)
        signed_assets = self.nodes[2].signrawtransactionwithwallet(
            blind_assets)

        # And finally send
        self.nodes[2].sendrawtransaction(signed_assets['hex'])
        self.nodes[2].generate(101)
        self.sync_all()

        issuancedata = self.nodes[2].issueasset(
            0, Decimal('0.00000006'))  #0 of asset, 6 reissuance token

        # Node 2 will send node 1 a reissuance token, both will generate assets
        self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(),
                                    Decimal('0.00000001'), "", "", False,
                                    False, 1, "UNSET", False,
                                    issuancedata["token"])
        # node 1 needs to know about a (re)issuance to reissue itself
        self.nodes[1].importaddress(self.nodes[2].gettransaction(
            issuancedata["txid"])["details"][0]["address"])
        # also send some bitcoin
        self.nodes[2].generate(1)
        self.sync_all()

        self.nodes[1].reissueasset(issuancedata["asset"], Decimal('0.05'))
        self.nodes[2].reissueasset(issuancedata["asset"], Decimal('0.025'))
        self.nodes[1].generate(1)
        self.sync_all()

        # Check for value accounting when asset issuance is null but token not, ie unblinded
        # HACK: Self-send to sweep up bitcoin inputs into blinded output.
        # We were hitting https://github.com/ElementsProject/elements/issues/473 for the following issuance
        self.nodes[0].sendtoaddress(
            self.nodes[0].getnewaddress(),
            self.nodes[0].getwalletinfo()["balance"]["bitcoin"], "", "", True)
        issued = self.nodes[0].issueasset(0, 1, False)
        walletinfo = self.nodes[0].getwalletinfo()
        assert issued["asset"] not in walletinfo["balance"]
        assert_equal(walletinfo["balance"][issued["token"]], Decimal(1))
        assert issued["asset"] not in walletinfo["unconfirmed_balance"]
        assert issued["token"] not in walletinfo["unconfirmed_balance"]

        # Check for value when receiving different assets by same address.
        self.nodes[0].sendtoaddress(unconfidential_address2,
                                    Decimal('0.00000001'), "", "", False,
                                    False, 1, "UNSET", False, test_asset)
        self.nodes[0].sendtoaddress(unconfidential_address2,
                                    Decimal('0.00000002'), "", "", False,
                                    False, 1, "UNSET", False, test_asset)
        self.nodes[0].generate(1)
        self.sync_all()
        received_by_address = self.nodes[1].listreceivedbyaddress(
            0, False, True)
        multi_asset_amount = [
            x for x in received_by_address
            if x['address'] == unconfidential_address2
        ][0]['amount']
        assert_equal(multi_asset_amount['bitcoin'], value1 + value3)
        assert_equal(multi_asset_amount[test_asset], Decimal('0.00000003'))

        # Check blinded multisig functionality and partial blinding functionality

        # Get two pubkeys
        blinded_addr = self.nodes[0].getnewaddress()
        pubkey = self.nodes[0].getaddressinfo(blinded_addr)["pubkey"]
        blinded_addr2 = self.nodes[1].getnewaddress()
        pubkey2 = self.nodes[1].getaddressinfo(blinded_addr2)["pubkey"]
        pubkeys = [pubkey, pubkey2]
        # Add multisig address
        unconfidential_addr = self.nodes[0].addmultisigaddress(
            2, pubkeys)["address"]
        self.nodes[1].addmultisigaddress(2, pubkeys)
        self.nodes[0].importaddress(unconfidential_addr)
        self.nodes[1].importaddress(unconfidential_addr)
        # Use blinding key from node 0's original getnewaddress call
        blinding_pubkey = self.nodes[0].getaddressinfo(
            blinded_addr)["confidential_key"]
        blinding_key = self.nodes[0].dumpblindingkey(blinded_addr)
        # Create blinded address from p2sh address and import corresponding privkey
        blinded_multisig_addr = self.nodes[0].createblindedaddress(
            unconfidential_addr, blinding_pubkey)
        self.nodes[0].importblindingkey(blinded_multisig_addr, blinding_key)

        # Issue new asset, to use different assets in one transaction when doing
        # partial blinding. Just to make these tests a bit more elaborate :-)
        issued3 = self.nodes[2].issueasset(1, 0)
        self.nodes[2].generate(1)
        self.sync_all()
        node2_balance = self.nodes[2].getbalance()
        assert issued3['asset'] in node2_balance
        assert_equal(node2_balance[issued3['asset']], Decimal(1))

        # Send asset to blinded multisig address and check that it was received
        self.nodes[2].sendtoaddress(address=blinded_multisig_addr,
                                    amount=1,
                                    assetlabel=issued3['asset'])
        self.sync_all()
        # We will use this multisig UTXO in our partially-blinded transaction,
        # and will also check that multisig UTXO can be successfully spent
        # after the transaction is signed by node1 and node0 in succession.
        unspent_asset = self.nodes[0].listunspent(0, 0, [unconfidential_addr],
                                                  True,
                                                  {"asset": issued3['asset']})
        assert_equal(len(unspent_asset), 1)
        assert issued3['asset'] not in self.nodes[2].getbalance()

        # Create new UTXO on node0 to be used in our partially-blinded transaction
        blinded_addr = self.nodes[0].getnewaddress()
        addr = self.nodes[0].validateaddress(blinded_addr)["unconfidential"]
        self.nodes[0].sendtoaddress(blinded_addr, 0.1)
        unspent = self.nodes[0].listunspent(0, 0, [addr])
        assert_equal(len(unspent), 1)

        # Create new UTXO on node1 to be used in our partially-blinded transaction
        blinded_addr2 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[1].validateaddress(blinded_addr2)["unconfidential"]
        self.nodes[1].sendtoaddress(blinded_addr2, 0.11)
        unspent2 = self.nodes[1].listunspent(0, 0, [addr2])
        assert_equal(len(unspent2), 1)

        # The transaction will have three non-fee outputs
        dst_addr = self.nodes[0].getnewaddress()
        dst_addr2 = self.nodes[1].getnewaddress()
        dst_addr3 = self.nodes[2].getnewaddress()

        # Inputs are selected up front
        inputs = [{
            "txid": unspent2[0]["txid"],
            "vout": unspent2[0]["vout"]
        }, {
            "txid": unspent[0]["txid"],
            "vout": unspent[0]["vout"]
        }, {
            "txid": unspent_asset[0]["txid"],
            "vout": unspent_asset[0]["vout"]
        }]

        # Create one part of the transaction to partially blind
        rawtx = self.nodes[0].createrawtransaction(
            inputs[:1], {dst_addr2: Decimal("0.01")})

        # Create another part of the transaction to partially blind
        rawtx2 = self.nodes[0].createrawtransaction(
            inputs[1:], {
                dst_addr: Decimal("0.1"),
                dst_addr3: Decimal("1.0")
            }, 0, False, {
                dst_addr: unspent[0]['asset'],
                dst_addr3: unspent_asset[0]['asset']
            })

        sum_i = unspent2[0]["amount"] + unspent[0]["amount"]
        sum_o = 0.01 + 0.10 + 0.1
        assert_equal(int(round(sum_i * COIN)), int(round(sum_o * COIN)))

        # Blind the first part of the transaction - we need to supply the
        # assetcommmitments for all of the inputs, for the surjectionproof
        # to be valid after we combine the transactions
        blindtx = self.nodes[1].blindrawtransaction(rawtx, True, [
            unspent2[0]['assetcommitment'], unspent[0]['assetcommitment'],
            unspent_asset[0]['assetcommitment']
        ])

        # Combine the transactions

        # Blinded, but incomplete transaction.
        # 1 inputs and 1 output, but no fee output, and
        # it was blinded with 3 asset commitments, that means
        # the final transaction should have 3 inputs.
        btx = CTransaction()
        btx.deserialize(io.BytesIO(hex_str_to_bytes(blindtx)))

        # Unblinded transaction, with 2 inputs and 2 outputs.
        # We will add them to the other transaction to make it complete.
        ubtx = CTransaction()
        ubtx.deserialize(io.BytesIO(hex_str_to_bytes(rawtx2)))

        # We will add outputs of unblinded transaction
        # on top of inputs and outputs of the blinded, but incomplete transaction.
        # We also append empty witness instances to make witness arrays match
        # vin/vout arrays
        btx.vin.append(ubtx.vin[0])
        btx.wit.vtxinwit.append(CTxInWitness())
        btx.vout.append(ubtx.vout[0])
        btx.wit.vtxoutwit.append(CTxOutWitness())
        btx.vin.append(ubtx.vin[1])
        btx.wit.vtxinwit.append(CTxInWitness())
        btx.vout.append(ubtx.vout[1])
        btx.wit.vtxoutwit.append(CTxOutWitness())
        # Add explicit fee output
        btx.vout.append(
            CTxOut(nValue=CTxOutValue(10000000),
                   nAsset=CTxOutAsset(BITCOIN_ASSET_OUT)))
        btx.wit.vtxoutwit.append(CTxOutWitness())

        # Input 0 is bitcoin asset (already blinded)
        # Input 1 is also bitcoin asset
        # Input 2 is our new asset

        # Blind with wrong order of assetcommitments - such transaction should be rejected
        blindtx = self.nodes[0].blindrawtransaction(
            btx.serialize().hex(), True, [
                unspent_asset[0]['assetcommitment'],
                unspent[0]['assetcommitment'], unspent2[0]['assetcommitment']
            ])

        stx2 = self.nodes[1].signrawtransactionwithwallet(blindtx)
        stx = self.nodes[0].signrawtransactionwithwallet(stx2['hex'])
        self.sync_all()

        assert_raises_rpc_error(-26, "bad-txns-in-ne-out",
                                self.nodes[2].sendrawtransaction, stx['hex'])

        # Blind with correct order of assetcommitments
        blindtx = self.nodes[0].blindrawtransaction(
            btx.serialize().hex(), True, [
                unspent2[0]['assetcommitment'], unspent[0]['assetcommitment'],
                unspent_asset[0]['assetcommitment']
            ])

        stx2 = self.nodes[1].signrawtransactionwithwallet(blindtx)
        stx = self.nodes[0].signrawtransactionwithwallet(stx2['hex'])
        txid = self.nodes[2].sendrawtransaction(stx['hex'])
        self.nodes[2].generate(1)
        assert self.nodes[2].gettransaction(txid)['confirmations'] == 1
        self.sync_all()

        # Check that the sent asset has reached its destination
        unconfidential_dst_addr3 = self.nodes[2].validateaddress(
            dst_addr3)["unconfidential"]
        unspent_asset2 = self.nodes[2].listunspent(1, 1,
                                                   [unconfidential_dst_addr3],
                                                   True,
                                                   {"asset": issued3['asset']})
        assert_equal(len(unspent_asset2), 1)
        assert_equal(unspent_asset2[0]['amount'], Decimal(1))
        # And that the balance was correctly updated
        assert_equal(self.nodes[2].getbalance()[issued3['asset']], Decimal(1))

        # Basic checks of rawblindrawtransaction functionality
        blinded_addr = self.nodes[0].getnewaddress()
        addr = self.nodes[0].validateaddress(blinded_addr)["unconfidential"]
        self.nodes[0].sendtoaddress(blinded_addr, 1)
        self.nodes[0].sendtoaddress(blinded_addr, 3)
        unspent = self.nodes[0].listunspent(0, 0)
        rawtx = self.nodes[0].createrawtransaction(
            [{
                "txid": unspent[0]["txid"],
                "vout": unspent[0]["vout"]
            }, {
                "txid": unspent[1]["txid"],
                "vout": unspent[1]["vout"]
            }], {
                addr:
                unspent[0]["amount"] + unspent[1]["amount"] - Decimal("0.2"),
                "fee": Decimal("0.2")
            })
        # Blinding will fail with 2 blinded inputs and 0 blinded outputs
        # since it has no notion of a wallet to fill in a 0-value OP_RETURN output
        try:
            self.nodes[0].rawblindrawtransaction(
                rawtx,
                [unspent[0]["amountblinder"], unspent[1]["amountblinder"]],
                [unspent[0]["amount"], unspent[1]["amount"]],
                [unspent[0]["asset"], unspent[1]["asset"]],
                [unspent[0]["assetblinder"], unspent[1]["assetblinder"]])
            raise AssertionError(
                "Shouldn't be able to blind 2 input 0 output transaction via rawblindraw"
            )
        except JSONRPCException:
            pass

        # Blinded destination added, can blind, sign and send
        rawtx = self.nodes[0].createrawtransaction(
            [{
                "txid": unspent[0]["txid"],
                "vout": unspent[0]["vout"]
            }, {
                "txid": unspent[1]["txid"],
                "vout": unspent[1]["vout"]
            }], {
                blinded_addr:
                unspent[0]["amount"] + unspent[1]["amount"] - Decimal("0.002"),
                "fee":
                Decimal("0.002")
            })
        signtx = self.nodes[0].signrawtransactionwithwallet(rawtx)

        try:
            self.nodes[0].sendrawtransaction(signtx["hex"])
            raise AssertionError(
                "Shouldn't be able to send unblinded tx with emplaced pubkey in output without additional argument"
            )
        except JSONRPCException:
            pass

        # Make sure RPC throws when an invalid blinding factor is provided.
        bad_blinder = 'FF' * 32
        assert_raises_rpc_error(
            -8,
            "Unable to blind transaction: Are you sure each asset type to blind is represented in the inputs?",
            self.nodes[0].rawblindrawtransaction, rawtx,
            [unspent[0]["amountblinder"], bad_blinder],
            [unspent[0]["amount"], unspent[1]["amount"]],
            [unspent[0]["asset"], unspent[1]["asset"]],
            [unspent[0]["assetblinder"], unspent[1]["assetblinder"]])
        assert_raises_rpc_error(
            -8,
            "Unable to blind transaction: Are you sure each asset type to blind is represented in the inputs?",
            self.nodes[0].rawblindrawtransaction, rawtx,
            [unspent[0]["amountblinder"], unspent[1]["amountblinder"]],
            [unspent[0]["amount"], unspent[1]["amount"]],
            [unspent[0]["asset"], unspent[1]["asset"]],
            [unspent[0]["assetblinder"], bad_blinder])

        blindtx = self.nodes[0].rawblindrawtransaction(
            rawtx, [unspent[0]["amountblinder"], unspent[1]["amountblinder"]],
            [unspent[0]["amount"], unspent[1]["amount"]],
            [unspent[0]["asset"], unspent[1]["asset"]],
            [unspent[0]["assetblinder"], unspent[1]["assetblinder"]])
        signtx = self.nodes[0].signrawtransactionwithwallet(blindtx)
        txid = self.nodes[0].sendrawtransaction(signtx["hex"])
        for output in self.nodes[0].decoderawtransaction(blindtx)["vout"]:
            if "asset" in output and output["scriptPubKey"]["type"] != "fee":
                raise AssertionError("An unblinded output exists")

        # Test fundrawtransaction with multiple assets
        issue = self.nodes[0].issueasset(1, 0)
        assetaddr = self.nodes[0].getnewaddress()
        rawtx = self.nodes[0].createrawtransaction(
            [], {
                assetaddr: 1,
                self.nodes[0].getnewaddress(): 2
            }, 0, False, {assetaddr: issue["asset"]})
        funded = self.nodes[0].fundrawtransaction(rawtx)
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        signed = self.nodes[0].signrawtransactionwithwallet(blinded)
        txid = self.nodes[0].sendrawtransaction(signed["hex"])

        # Test fundrawtransaction with multiple inputs, creating > vout.size change
        rawtx = self.nodes[0].createrawtransaction(
            [{
                "txid": txid,
                "vout": 0
            }, {
                "txid": txid,
                "vout": 1
            }], {self.nodes[0].getnewaddress(): 5})
        funded = self.nodes[0].fundrawtransaction(rawtx)
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        signed = self.nodes[0].signrawtransactionwithwallet(blinded)
        txid = self.nodes[0].sendrawtransaction(signed["hex"])

        # Test corner case where wallet appends a OP_RETURN output, yet doesn't blind it
        # due to the fact that the output value is 0-value and input pedersen commitments
        # self-balance. This is rare corner case, but ok.
        unblinded = self.nodes[0].validateaddress(
            self.nodes[0].getnewaddress())["unconfidential"]
        self.nodes[0].sendtoaddress(unblinded,
                                    self.nodes[0].getbalance()["bitcoin"], "",
                                    "", True)
        # Make tx with blinded destination and change outputs only
        self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(),
                                    self.nodes[0].getbalance()["bitcoin"] / 2)
        # Send back again, this transaction should have 3 outputs, all unblinded
        txid = self.nodes[0].sendtoaddress(
            unblinded, self.nodes[0].getbalance()["bitcoin"], "", "", True)
        outputs = self.nodes[0].getrawtransaction(txid, 1)["vout"]
        assert_equal(len(outputs), 3)
        assert "value" in outputs[0] and "value" in outputs[
            1] and "value" in outputs[2]
        assert_equal(outputs[2]["scriptPubKey"]["type"], 'nulldata')

        # Test burn argument in createrawtransaction
        raw_burn1 = self.nodes[0].createrawtransaction(
            [], {
                self.nodes[0].getnewaddress(): 1,
                "burn": 2
            })
        decode_burn1 = self.nodes[0].decoderawtransaction(raw_burn1)
        assert_equal(len(decode_burn1["vout"]), 2)
        found_pay = False
        found_burn = False
        for output in decode_burn1["vout"]:
            if output["scriptPubKey"]["asm"] == "OP_RETURN":
                found_burn = True
                if output["asset"] != self.nodes[0].dumpassetlabels(
                )["bitcoin"]:
                    raise Exception(
                        "Burn should have been bitcoin(policyAsset)")
            if output["scriptPubKey"]["type"] == "witness_v0_keyhash":
                found_pay = True
        assert found_pay and found_burn

        raw_burn2 = self.nodes[0].createrawtransaction(
            [], {
                self.nodes[0].getnewaddress(): 1,
                "burn": 2
            }, 101, False, {"burn": "deadbeef" * 8})
        decode_burn2 = self.nodes[0].decoderawtransaction(raw_burn2)
        assert_equal(len(decode_burn2["vout"]), 2)
        found_pay = False
        found_burn = False
        for output in decode_burn2["vout"]:
            if output["scriptPubKey"]["asm"] == "OP_RETURN":
                found_burn = True
                if output["asset"] != "deadbeef" * 8:
                    raise Exception("Burn should have been deadbeef")
            if output["scriptPubKey"]["type"] == "witness_v0_keyhash":
                found_pay = True
        assert found_pay and found_burn
Esempio n. 41
0
    def run_test(self):
        self.import_deterministic_coinbase_privkeys(
        )  # Create wallets for all nodes

        parent = self.nodes[0]
        #parent2 = self.nodes[1]
        sidechain = self.nodes[2]
        sidechain2 = self.nodes[3]

        # If we're testing post-transition, force a fedpegscript transition and
        # getting rid of old fedpegscript by making at least another epoch pass by
        WSH_OP_TRUE = self.nodes[0].decodescript("51")["segwit"]["hex"]
        # We just randomize the keys a bit to get another valid fedpegscript
        new_fedpegscript = sidechain.tweakfedpegscript("f00dbabe")["script"]
        if self.options.post_transition:
            print("Running test post-transition")
            for _ in range(30):
                block_hex = sidechain.getnewblockhex(
                    0, {
                        "signblockscript": WSH_OP_TRUE,
                        "max_block_witness": 10,
                        "fedpegscript": new_fedpegscript,
                        "extension_space": []
                    })
                sidechain.submitblock(block_hex)
            assert_equal(sidechain.getsidechaininfo()["current_fedpegscripts"],
                         [new_fedpegscript] * 2)

        if self.options.pre_transition:
            print(
                "Running test pre-transition, dynafed activated from first block"
            )

        for node in self.nodes:
            node.importprivkey(privkey=node.get_deterministic_priv_key().key,
                               label="mining")
        util.node_fastmerkle = sidechain

        parent.generate(101)
        sidechain.generate(101)
        self.log.info("sidechain info: {}".format(
            sidechain.getsidechaininfo()))

        addrs = sidechain.getpeginaddress()
        addr = addrs["mainchain_address"]
        assert_equal(
            sidechain.decodescript(addrs["claim_script"])["type"],
            "witness_v0_keyhash")
        txid1 = parent.sendtoaddress(addr, 24)
        vout = find_vout_for_address(parent, txid1, addr)
        # 10+2 confirms required to get into mempool and confirm
        assert_equal(sidechain.getsidechaininfo()["pegin_confirmation_depth"],
                     10)
        parent.generate(1)
        time.sleep(2)
        proof = parent.gettxoutproof([txid1])

        raw = parent.gettransaction(txid1)["hex"]

        # Create a wallet in order to test that multi-wallet support works correctly for claimpegin
        #   (Regression test for https://github.com/ElementsProject/elements/issues/812 .)
        sidechain.createwallet("throwaway")
        # Set up our sidechain RPCs to use the first wallet (with empty name). We do this by
        #   overriding the RPC object in a hacky way, to avoid breaking a different hack on TestNode
        #   that enables generate() to work despite the deprecation of the generate RPC.
        sidechain.rpc = sidechain.get_wallet_rpc("")

        print("Attempting peg-ins")
        # First attempt fails the consensus check but gives useful result
        try:
            pegtxid = sidechain.claimpegin(raw, proof)
            raise Exception(
                "Peg-in should not be mature enough yet, need another block.")
        except JSONRPCException as e:
            assert "Peg-in Bitcoin transaction needs more confirmations to be sent." in e.error[
                "message"]

        # Second attempt simply doesn't hit mempool bar
        parent.generate(10)
        try:
            pegtxid = sidechain.claimpegin(raw, proof)
            raise Exception(
                "Peg-in should not be mature enough yet, need another block.")
        except JSONRPCException as e:
            assert "Peg-in Bitcoin transaction needs more confirmations to be sent." in e.error[
                "message"]

        try:
            pegtxid = sidechain.createrawpegin(raw, proof, 'AEIOU')
            raise Exception("Peg-in with non-hex claim_script should fail.")
        except JSONRPCException as e:
            assert "Given claim_script is not hex." in e.error["message"]

        # Should fail due to non-matching wallet address
        try:
            scriptpubkey = sidechain.getaddressinfo(
                get_new_unconfidential_address(sidechain))["scriptPubKey"]
            pegtxid = sidechain.claimpegin(raw, proof, scriptpubkey)
            raise Exception(
                "Peg-in with non-matching claim_script should fail.")
        except JSONRPCException as e:
            assert "Given claim_script does not match the given Bitcoin transaction." in e.error[
                "message"]

        # 12 confirms allows in mempool
        parent.generate(1)

        # Make sure that a tx with a duplicate pegin claim input gets rejected.
        raw_pegin = sidechain.createrawpegin(raw, proof)["hex"]
        raw_pegin = FromHex(CTransaction(), raw_pegin)
        raw_pegin.vin.append(raw_pegin.vin[0])  # duplicate the pegin input
        raw_pegin = sidechain.signrawtransactionwithwallet(
            raw_pegin.serialize().hex())["hex"]
        assert_raises_rpc_error(-26, "bad-txns-inputs-duplicate",
                                sidechain.sendrawtransaction, raw_pegin)
        # Also try including this tx in a block manually and submitting it.
        doublespendblock = FromHex(CBlock(), sidechain.getnewblockhex())
        doublespendblock.vtx.append(FromHex(CTransaction(), raw_pegin))
        doublespendblock.hashMerkleRoot = doublespendblock.calc_merkle_root()
        add_witness_commitment(doublespendblock)
        doublespendblock.solve()
        block_hex = doublespendblock.serialize(True).hex()
        assert_raises_rpc_error(-25, "bad-txns-inputs-duplicate",
                                sidechain.testproposedblock, block_hex, True)

        # Should succeed via wallet lookup for address match, and when given
        raw_pegin = sidechain.createrawpegin(raw, proof)['hex']
        signed_pegin = sidechain.signrawtransactionwithwallet(raw_pegin)

        # Find the address that the peg-in used
        outputs = []
        for pegin_vout in sidechain.decoderawtransaction(raw_pegin)['vout']:
            if pegin_vout['scriptPubKey']['type'] == 'witness_v0_keyhash':
                outputs.append({
                    pegin_vout['scriptPubKey']['addresses'][0]:
                    pegin_vout['value']
                })
            elif pegin_vout['scriptPubKey']['type'] == 'fee':
                outputs.append({"fee": pegin_vout['value']})

        # Check the createrawtransaction makes the same unsigned peg-in transaction
        raw_pegin2 = sidechain.createrawtransaction(
            [{
                "txid": txid1,
                "vout": vout,
                "pegin_bitcoin_tx": raw,
                "pegin_txout_proof": proof,
                "pegin_claim_script": addrs["claim_script"]
            }], outputs)
        assert_equal(raw_pegin, raw_pegin2)
        # Check that createpsbt makes the correct unsigned peg-in
        pegin_psbt = sidechain.createpsbt(
            [{
                "txid": txid1,
                "vout": vout,
                "pegin_bitcoin_tx": raw,
                "pegin_txout_proof": proof,
                "pegin_claim_script": addrs["claim_script"]
            }], outputs)
        decoded_psbt = sidechain.decodepsbt(pegin_psbt)
        # Check that pegin_bitcoin_tx == raw, but due to stripping witnesses, we need to compare their txids
        txid1 = parent.decoderawtransaction(
            decoded_psbt['inputs'][0]['pegin_bitcoin_tx'])['txid']
        txid2 = parent.decoderawtransaction(raw)['txid']
        assert_equal(txid1, txid2)
        # Check the rest
        assert_equal(decoded_psbt['inputs'][0]['pegin_claim_script'],
                     addrs["claim_script"])
        assert_equal(decoded_psbt['inputs'][0]['pegin_txout_proof'], proof)
        assert_equal(decoded_psbt['inputs'][0]['pegin_genesis_hash'],
                     parent.getblockhash(0))
        # Make a psbt without those peg-in data and merge them
        merge_pegin_psbt = sidechain.createpsbt([{
            "txid": txid1,
            "vout": vout
        }], outputs)
        decoded_psbt = sidechain.decodepsbt(merge_pegin_psbt)
        assert 'pegin_bitcoin_tx' not in decoded_psbt['inputs'][0]
        assert 'pegin_claim_script' not in decoded_psbt['inputs'][0]
        assert 'pegin_txout_proof' not in decoded_psbt['inputs'][0]
        assert 'pegin_genesis_hash' not in decoded_psbt['inputs'][0]
        merged_pegin_psbt = sidechain.combinepsbt(
            [pegin_psbt, merge_pegin_psbt])
        assert_equal(pegin_psbt, merged_pegin_psbt)
        # Now sign the psbt
        signed_psbt = sidechain.walletsignpsbt(pegin_psbt)
        # Finalize and extract and compare
        fin_psbt = sidechain.finalizepsbt(signed_psbt['psbt'])
        assert_equal(fin_psbt, signed_pegin)

        # Try funding a psbt with the peg-in
        assert_equal(sidechain.getbalance()['bitcoin'], 50)
        out_bal = 0
        outputs.append({sidechain.getnewaddress(): 49.999})
        for out in outputs:
            for val in out.values():
                out_bal += Decimal(val)
        assert_greater_than(out_bal, 50)
        pegin_psbt = sidechain.walletcreatefundedpsbt(
            [{
                "txid": txid1,
                "vout": vout,
                "pegin_bitcoin_tx": raw,
                "pegin_txout_proof": proof,
                "pegin_claim_script": addrs["claim_script"]
            }], outputs, 0, {'add_inputs': True})
        signed_psbt = sidechain.walletsignpsbt(pegin_psbt['psbt'])
        fin_psbt = sidechain.finalizepsbt(signed_psbt['psbt'])
        assert fin_psbt['complete']

        sample_pegin_struct = FromHex(CTransaction(), signed_pegin["hex"])
        # Round-trip peg-in transaction using python serialization
        assert_equal(signed_pegin["hex"],
                     sample_pegin_struct.serialize().hex())
        # Store this for later (evil laugh)
        sample_pegin_witness = sample_pegin_struct.wit.vtxinwit[0].peginWitness

        pegtxid1 = sidechain.claimpegin(raw, proof)
        # Make sure a second pegin claim does not get accepted in the mempool when
        # another mempool tx already claims that pegin.
        assert_raises_rpc_error(-4, "txn-mempool-conflict",
                                sidechain.claimpegin, raw, proof)

        # Will invalidate the block that confirms this transaction later
        for node_group in self.node_groups:
            self.sync_all(node_group)
        blockhash = sidechain2.generate(1)
        for node_group in self.node_groups:
            self.sync_all(node_group)
        sidechain.generate(5)

        tx1 = sidechain.gettransaction(pegtxid1)

        if "confirmations" in tx1 and tx1["confirmations"] == 6:
            print("Peg-in is confirmed: Success!")
        else:
            raise Exception("Peg-in confirmation has failed.")

        # Look at pegin fields
        decoded = sidechain.decoderawtransaction(tx1["hex"])
        assert decoded["vin"][0]["is_pegin"] == True
        assert len(decoded["vin"][0]["pegin_witness"]) > 0
        # Check that there's sufficient fee for the peg-in
        vsize = decoded["vsize"]
        fee_output = decoded["vout"][1]
        fallbackfee_pervbyte = Decimal("0.00001") / Decimal("1000")
        assert fee_output["scriptPubKey"]["type"] == "fee"
        assert fee_output["value"] >= fallbackfee_pervbyte * vsize

        # Quick reorg checks of pegs
        sidechain.invalidateblock(blockhash[0])
        if sidechain.gettransaction(pegtxid1)["confirmations"] != 0:
            raise Exception(
                "Peg-in didn't unconfirm after invalidateblock call.")

        # Re-org causes peg-ins to get booted(wallet will resubmit in 10 minutes)
        assert_equal(sidechain.getrawmempool(), [])
        sidechain.sendrawtransaction(tx1["hex"])

        # Create duplicate claim, put it in block along with current one in mempool
        # to test duplicate-in-block claims between two txs that are in the same block.
        raw_pegin = sidechain.createrawpegin(raw, proof)["hex"]
        raw_pegin = sidechain.signrawtransactionwithwallet(raw_pegin)["hex"]
        raw_pegin = FromHex(CTransaction(), raw_pegin)
        doublespendblock = FromHex(CBlock(), sidechain.getnewblockhex())
        assert len(doublespendblock.vtx) == 2  # coinbase and pegin
        doublespendblock.vtx.append(raw_pegin)
        doublespendblock.hashMerkleRoot = doublespendblock.calc_merkle_root()
        add_witness_commitment(doublespendblock)
        doublespendblock.solve()
        block_hex = doublespendblock.serialize(True).hex()
        assert_raises_rpc_error(-25, "bad-txns-double-pegin",
                                sidechain.testproposedblock, block_hex, True)

        # Re-enters block
        sidechain.generate(1)
        if sidechain.gettransaction(pegtxid1)["confirmations"] != 1:
            raise Exception("Peg-in should have one confirm on side block.")
        sidechain.reconsiderblock(blockhash[0])
        if sidechain.gettransaction(pegtxid1)["confirmations"] != 6:
            raise Exception("Peg-in should be back to 6 confirms.")

        # Now the pegin is already claimed in a confirmed tx.
        # In that case, a duplicate claim should (1) not be accepted in the mempool
        # and (2) not be accepted in a block.
        assert_raises_rpc_error(-4, "pegin-already-claimed",
                                sidechain.claimpegin, raw, proof)
        # For case (2), manually craft a block and include the tx.
        doublespendblock = FromHex(CBlock(), sidechain.getnewblockhex())
        doublespendblock.vtx.append(raw_pegin)
        doublespendblock.hashMerkleRoot = doublespendblock.calc_merkle_root()
        add_witness_commitment(doublespendblock)
        doublespendblock.solve()
        block_hex = doublespendblock.serialize(True).hex()
        assert_raises_rpc_error(-25, "bad-txns-double-pegin",
                                sidechain.testproposedblock, block_hex, True)

        # Do multiple claims in mempool
        n_claims = 6

        print("Flooding mempool with a few claims")
        pegtxs = []
        sidechain.generate(101)

        # Do mixture of raw peg-in and automatic peg-in tx construction
        # where raw creation is done on another node
        for i in range(n_claims):
            addrs = sidechain.getpeginaddress()
            txid = parent.sendtoaddress(addrs["mainchain_address"], 1)
            parent.generate(1)
            proof = parent.gettxoutproof([txid])
            raw = parent.gettransaction(txid)["hex"]
            if i % 2 == 0:
                parent.generate(11)
                pegtxs += [sidechain.claimpegin(raw, proof)]
            else:
                # The raw API doesn't check for the additional 2 confirmation buffer
                # So we only get 10 confirms then send off. Miners will add to block anyways.

                # Don't mature whole way yet to test signing immature peg-in input
                parent.generate(8)
                # Wallet in sidechain2 gets funds instead of sidechain
                raw_pegin = sidechain2.createrawpegin(
                    raw, proof, addrs["claim_script"])["hex"]
                # First node should also be able to make a valid transaction with or without 3rd arg
                # since this wallet originated the claim_script itself
                sidechain.createrawpegin(raw, proof, addrs["claim_script"])
                sidechain.createrawpegin(raw, proof)
                signed_pegin = sidechain.signrawtransactionwithwallet(
                    raw_pegin)
                assert signed_pegin["complete"]
                assert "warning" in signed_pegin  # warning for immature peg-in
                # fully mature them now
                parent.generate(1)
                pegtxs += [sidechain.sendrawtransaction(signed_pegin["hex"])]

        for node_group in self.node_groups:
            self.sync_all(node_group)
        sidechain2.generate(1)
        for i, pegtxid in enumerate(pegtxs):
            if i % 2 == 0:
                tx = sidechain.gettransaction(pegtxid)
            else:
                tx = sidechain2.gettransaction(pegtxid)
            if "confirmations" not in tx or tx["confirmations"] == 0:
                raise Exception("Peg-in confirmation has failed.")

        print("Test pegouts")
        self.test_pegout(get_new_unconfidential_address(parent, "legacy"),
                         sidechain)
        self.test_pegout(get_new_unconfidential_address(parent, "p2sh-segwit"),
                         sidechain)
        self.test_pegout(get_new_unconfidential_address(parent, "bech32"),
                         sidechain)

        print("Test pegout P2SH")
        parent_chain_addr = get_new_unconfidential_address(parent)
        parent_pubkey = parent.getaddressinfo(parent_chain_addr)["pubkey"]
        parent_chain_p2sh_addr = parent.createmultisig(
            1, [parent_pubkey])["address"]
        self.test_pegout(parent_chain_p2sh_addr, sidechain)

        print("Test pegout Garbage")
        parent_chain_addr = "garbage"
        try:
            self.test_pegout(parent_chain_addr, sidechain)
            raise Exception("A garbage address should fail.")
        except JSONRPCException as e:
            assert "Invalid Bitcoin address" in e.error["message"]

        print("Test pegout Garbage valid")
        prev_txid = sidechain.sendtoaddress(sidechain.getnewaddress(), 1)
        sidechain.generate(1)
        pegout_chain = 'a' * 64
        pegout_hex = 'b' * 500
        inputs = [{"txid": prev_txid, "vout": 0}]
        outputs = {"vdata": [pegout_chain, pegout_hex]}
        rawtx = sidechain.createrawtransaction(inputs, outputs)
        raw_pegout = sidechain.decoderawtransaction(rawtx)

        assert 'vout' in raw_pegout and len(raw_pegout['vout']) > 0
        pegout_tested = False
        for output in raw_pegout['vout']:
            scriptPubKey = output['scriptPubKey']
            if 'type' in scriptPubKey and scriptPubKey['type'] == 'nulldata':
                assert 'pegout_hex' in scriptPubKey and 'pegout_asm' in scriptPubKey and 'pegout_type' in scriptPubKey
                assert 'pegout_chain' in scriptPubKey and 'pegout_reqSigs' not in scriptPubKey and 'pegout_addresses' not in scriptPubKey
                assert scriptPubKey['pegout_type'] == 'nonstandard'
                assert scriptPubKey['pegout_chain'] == pegout_chain
                assert scriptPubKey['pegout_hex'] == pegout_hex
                pegout_tested = True
                break
        assert pegout_tested

        print(
            "Now test failure to validate peg-ins based on intermittent bitcoind rpc failure"
        )
        self.stop_node(1)
        txid = parent.sendtoaddress(addr, 1)
        parent.generate(12)
        proof = parent.gettxoutproof([txid])
        raw = parent.gettransaction(txid)["hex"]
        sidechain.claimpegin(raw, proof)  # stuck peg
        sidechain.generate(1)
        print("Waiting to ensure block is being rejected by sidechain2")
        time.sleep(5)

        assert sidechain.getblockcount() != sidechain2.getblockcount()

        print("Restarting parent2")
        self.start_node(1)
        self.connect_nodes(0, 1)

        # Don't make a block, race condition when pegin-invalid block
        # is awaiting further validation, nodes reject subsequent blocks
        # even ones they create
        print(
            "Now waiting for node to re-evaluate peg-in witness failed block... should take a few seconds"
        )
        for node_group in self.node_groups:
            self.sync_all(node_group)
        print("Completed!\n")
        print("Now send funds out in two stages, partial, and full")
        some_btc_addr = get_new_unconfidential_address(parent)
        bal_1 = sidechain.getwalletinfo()["balance"]['bitcoin']
        try:
            sidechain.sendtomainchain(some_btc_addr, bal_1 + 1)
            raise Exception("Sending out too much; should have failed")
        except JSONRPCException as e:
            assert "Insufficient funds" in e.error["message"]

        assert sidechain.getwalletinfo()["balance"]["bitcoin"] == bal_1
        try:
            sidechain.sendtomainchain(some_btc_addr + "b", bal_1 - 1)
            raise Exception("Sending to invalid address; should have failed")
        except JSONRPCException as e:
            assert "Invalid Bitcoin address" in e.error["message"]

        assert sidechain.getwalletinfo()["balance"]["bitcoin"] == bal_1
        try:
            sidechain.sendtomainchain("1Nro9WkpaKm9axmcfPVp79dAJU1Gx7VmMZ",
                                      bal_1 - 1)
            raise Exception(
                "Sending to mainchain address when should have been testnet; should have failed"
            )
        except JSONRPCException as e:
            assert "Invalid Bitcoin address" in e.error["message"]

        assert sidechain.getwalletinfo()["balance"]["bitcoin"] == bal_1

        # Test superfluous peg-in witness data on regular spend before we have no funds
        raw_spend = sidechain.createrawtransaction(
            [], {sidechain.getnewaddress(): 1})
        fund_spend = sidechain.fundrawtransaction(raw_spend)
        sign_spend = sidechain.signrawtransactionwithwallet(fund_spend["hex"])
        signed_struct = FromHex(CTransaction(), sign_spend["hex"])
        # Non-witness tx has no witness serialized yet
        if len(signed_struct.wit.vtxinwit) == 0:
            signed_struct.wit.vtxinwit = [CTxInWitness()]
        signed_struct.wit.vtxinwit[
            0].peginWitness.stack = sample_pegin_witness.stack
        assert_equal(
            sidechain.testmempoolaccept([signed_struct.serialize().hex()
                                         ])[0]["allowed"], False)
        assert_equal(
            sidechain.testmempoolaccept([signed_struct.serialize().hex()
                                         ])[0]["reject-reason"],
            "extra-pegin-witness")
        signed_struct.wit.vtxinwit[0].peginWitness.stack = [b'\x00' * 100000
                                                            ]  # lol
        assert_equal(
            sidechain.testmempoolaccept([signed_struct.serialize().hex()
                                         ])[0]["allowed"], False)
        assert_equal(
            sidechain.testmempoolaccept([signed_struct.serialize().hex()
                                         ])[0]["reject-reason"],
            "extra-pegin-witness")

        peg_out_txid = sidechain.sendtomainchain(some_btc_addr, 1)

        peg_out_details = sidechain.decoderawtransaction(
            sidechain.getrawtransaction(peg_out_txid))
        # peg-out, change, fee
        assert len(peg_out_details["vout"]) == 3
        found_pegout_value = False
        for output in peg_out_details["vout"]:
            if "value" in output and output["value"] == 1:
                found_pegout_value = True
        assert found_pegout_value

        bal_2 = sidechain.getwalletinfo()["balance"]["bitcoin"]
        # Make sure balance went down
        assert bal_2 + 1 < bal_1

        # Send rest of coins using subtractfee from output arg
        sidechain.sendtomainchain(some_btc_addr, bal_2, True)

        assert sidechain.getwalletinfo()["balance"]['bitcoin'] == 0

        print('Test coinbase peg-in maturity rules')

        # Have bitcoin output go directly into a claim output
        pegin_info = sidechain.getpeginaddress()
        mainchain_addr = pegin_info["mainchain_address"]
        # Watch the address so we can get tx without txindex
        parent.importaddress(mainchain_addr)
        claim_block = parent.generatetoaddress(50, mainchain_addr)[0]
        for node_group in self.node_groups:
            self.sync_all(node_group)
        block_coinbase = parent.getblock(claim_block, 2)["tx"][0]
        claim_txid = block_coinbase["txid"]
        claim_tx = block_coinbase["hex"]
        claim_proof = parent.gettxoutproof([claim_txid], claim_block)

        # Can't claim something even though it has 50 confirms since it's coinbase
        assert_raises_rpc_error(
            -8,
            "Peg-in Bitcoin transaction needs more confirmations to be sent.",
            sidechain.claimpegin, claim_tx, claim_proof)
        # If done via raw API, still doesn't work
        coinbase_pegin = sidechain.createrawpegin(claim_tx, claim_proof)
        assert_equal(coinbase_pegin["mature"], False)
        signed_pegin = sidechain.signrawtransactionwithwallet(
            coinbase_pegin["hex"])["hex"]
        assert_raises_rpc_error(
            -26, "bad-pegin-witness, Needs more confirmations.",
            sidechain.sendrawtransaction, signed_pegin)

        # 50 more blocks to allow wallet to make it succeed by relay and consensus
        parent.generatetoaddress(50, parent.getnewaddress())
        for node_group in self.node_groups:
            self.sync_all(node_group)
        # Wallet still doesn't want to for 2 more confirms
        assert_equal(
            sidechain.createrawpegin(claim_tx, claim_proof)["mature"], False)
        # But we can just shoot it off
        claim_txid = sidechain.sendrawtransaction(signed_pegin)
        sidechain.generatetoaddress(1, sidechain.getnewaddress())
        for node_group in self.node_groups:
            self.sync_all(node_group)
        assert_equal(sidechain.gettransaction(claim_txid)["confirmations"], 1)

        # Test a confidential pegin.
        print("Performing a confidential pegin.")
        # start pegin
        pegin_addrs = sidechain.getpeginaddress()
        assert_equal(
            sidechain.decodescript(pegin_addrs["claim_script"])["type"],
            "witness_v0_keyhash")
        pegin_addr = addrs["mainchain_address"]
        txid_fund = parent.sendtoaddress(pegin_addr, 10)
        # 10+2 confirms required to get into mempool and confirm
        parent.generate(11)
        for node_group in self.node_groups:
            self.sync_all(node_group)
        proof = parent.gettxoutproof([txid_fund])
        assert_equal(sidechain.gettransaction(claim_txid)["confirmations"], 1)

        # Test a confidential pegin.
        print("Performing a confidential pegin.")
        # start pegin
        pegin_addrs = sidechain.getpeginaddress()
        assert_equal(
            sidechain.decodescript(pegin_addrs["claim_script"])["type"],
            "witness_v0_keyhash")
        pegin_addr = addrs["mainchain_address"]
        txid_fund = parent.sendtoaddress(pegin_addr, 10)
        # 10+2 confirms required to get into mempool and confirm
        parent.generate(11)
        for node_group in self.node_groups:
            self.sync_all(node_group)
        proof = parent.gettxoutproof([txid_fund])
        raw = parent.gettransaction(txid_fund)["hex"]
        raw_pegin = sidechain.createrawpegin(raw, proof)['hex']
        pegin = FromHex(CTransaction(), raw_pegin)
        # add new blinding pubkey for the pegin output
        pegin.vout[0].nNonce = CTxOutNonce(
            hex_str_to_bytes(
                sidechain.getaddressinfo(sidechain.getnewaddress(
                    "", "blech32"))["confidential_key"]))
        # now add an extra input and output from listunspent; we need a blinded output for this
        blind_addr = sidechain.getnewaddress("", "blech32")
        sidechain.sendtoaddress(blind_addr, 15)
        sidechain.generate(6)
        # Make sure sidechain2 knows about the same input
        for node_group in self.node_groups:
            self.sync_all(node_group)
        unspent = [
            u for u in sidechain.listunspent(6, 6) if u["amount"] == 15
        ][0]
        assert (unspent["spendable"])
        assert ("amountcommitment" in unspent)
        pegin.vin.append(
            CTxIn(COutPoint(int(unspent["txid"], 16), unspent["vout"])))
        # insert corresponding output before fee output
        new_destination = sidechain.getaddressinfo(
            sidechain.getnewaddress("", "blech32"))
        new_dest_script_pk = hex_str_to_bytes(new_destination["scriptPubKey"])
        new_dest_nonce = CTxOutNonce(
            hex_str_to_bytes(new_destination["confidential_key"]))
        new_dest_asset = pegin.vout[0].nAsset
        pegin.vout.insert(
            1,
            CTxOut(
                int(unspent["amount"] * COIN) - 10000, new_dest_script_pk,
                new_dest_asset, new_dest_nonce))
        # add the 10 ksat fee
        pegin.vout[2].nValue.setToAmount(pegin.vout[2].nValue.getAmount() +
                                         10000)
        pegin_hex = ToHex(pegin)
        # test with both blindraw and rawblindraw
        raw_pegin_blinded1 = sidechain.blindrawtransaction(pegin_hex)
        raw_pegin_blinded2 = sidechain.rawblindrawtransaction(
            pegin_hex, ["", unspent["amountblinder"]], [10, 15],
            [unspent["asset"]] * 2, ["", unspent["assetblinder"]], "", False)
        pegin_signed1 = sidechain.signrawtransactionwithwallet(
            raw_pegin_blinded1)
        pegin_signed2 = sidechain.signrawtransactionwithwallet(
            raw_pegin_blinded2)
        for pegin_signed in [pegin_signed1, pegin_signed2]:
            final_decoded = sidechain.decoderawtransaction(pegin_signed["hex"])
            assert (final_decoded["vin"][0]["is_pegin"])
            assert (not final_decoded["vin"][1]["is_pegin"])
            assert ("assetcommitment" in final_decoded["vout"][0])
            assert ("valuecommitment" in final_decoded["vout"][0])
            assert ("commitmentnonce" in final_decoded["vout"][0])
            assert ("value" not in final_decoded["vout"][0])
            assert ("asset" not in final_decoded["vout"][0])
            assert (final_decoded["vout"][0]["commitmentnonce_fully_valid"])
            assert ("assetcommitment" in final_decoded["vout"][1])
            assert ("valuecommitment" in final_decoded["vout"][1])
            assert ("commitmentnonce" in final_decoded["vout"][1])
            assert ("value" not in final_decoded["vout"][1])
            assert ("asset" not in final_decoded["vout"][1])
            assert (final_decoded["vout"][1]["commitmentnonce_fully_valid"])
            assert ("value" in final_decoded["vout"][2])
            assert ("asset" in final_decoded["vout"][2])
            # check that it is accepted in either mempool
            accepted = sidechain.testmempoolaccept([pegin_signed["hex"]])[0]
            if not accepted["allowed"]:
                raise Exception(accepted["reject-reason"])
            accepted = sidechain2.testmempoolaccept([pegin_signed["hex"]])[0]
            if not accepted["allowed"]:
                raise Exception(accepted["reject-reason"])
            print("Blinded transaction looks ok!"
                  )  # need this print to distinguish failures in for loop

        print('Success!')

        # Manually stop sidechains first, then the parent chains.
        self.stop_node(2)
        self.stop_node(3)
        self.stop_node(0)
        self.stop_node(1)
Esempio n. 42
0
    def run_test(self):
        self.nodes[0].generate(161) #block 161

        self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules before the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({})
        assert(tmpl['sizelimit'] == 1000000)
        assert('weightlimit' not in tmpl)
        assert(tmpl['sigoplimit'] == 20000)
        assert(tmpl['transactions'][0]['hash'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 2)
        tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']})
        assert(tmpl['sizelimit'] == 1000000)
        assert('weightlimit' not in tmpl)
        assert(tmpl['sigoplimit'] == 20000)
        assert(tmpl['transactions'][0]['hash'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 2)
        self.nodes[0].generate(1) #block 162

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = [] # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh
        wit_ids = [] # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness
        for i in range(3):
            newaddress = self.nodes[i].getnewaddress()
            self.pubkey.append(self.nodes[i].getaddressinfo(newaddress)["pubkey"])
            multiscript = CScript([OP_1, hex_str_to_bytes(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG])
            p2sh_addr = self.nodes[i].addwitnessaddress(newaddress)
            bip173_addr = self.nodes[i].addwitnessaddress(newaddress, False)
            p2sh_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'bech32')['address']
            assert_equal(p2sh_addr, key_to_p2sh_p2wpkh(self.pubkey[-1]))
            assert_equal(bip173_addr, key_to_p2wpkh(self.pubkey[-1]))
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))
            p2sh_ids.append([])
            wit_ids.append([])
            for v in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for i in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999")))
                    p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999")))

        self.nodes[0].generate(1) #block 163
        sync_blocks(self.nodes)

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance(), balance_presetup - 60*50 + 20*Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 20*Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance(), 20*Decimal("49.999"))

        self.nodes[0].generate(260) #block 423
        sync_blocks(self.nodes)

        self.log.info("Verify witness txs are skipped for mining before the fork")
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0], True) #block 424
        self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][0], True) #block 425
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0], True) #block 426
        self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][0], True) #block 427

        self.log.info("Verify unsigned p2sh witness txs without a redeem script are invalid")
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V0][1], False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag", p2sh_ids[NODE_2][WIT_V1][1], False)

        self.nodes[2].generate(4) # blocks 428-431

        self.log.info("Verify previous witness txs skipped for mining can now be mined")
        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        block = self.nodes[2].generate(1) #block 432 (first block with new rules; 432 = 144 * 3)
        sync_blocks(self.nodes)
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(block[0])["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info("Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V0][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", wit_ids[NODE_0][WIT_V1][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False)
        # unsigned with redeem script
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V0][0], False, witness_script(False, self.pubkey[0]))
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag", p2sh_ids[NODE_0][WIT_V1][0], False, witness_script(True, self.pubkey[0]))

        self.log.info("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag")
        assert(self.nodes[2].getblock(block[0], False) !=  self.nodes[0].getblock(block[0], False))
        assert(self.nodes[1].getblock(block[0], False) ==  self.nodes[2].getblock(block[0], False))
        for i in range(len(segwit_tx_list)):
            tx = FromHex(CTransaction(), self.nodes[2].gettransaction(segwit_tx_list[i])["hex"])
            assert(self.nodes[2].getrawtransaction(segwit_tx_list[i]) != self.nodes[0].getrawtransaction(segwit_tx_list[i]))
            assert(self.nodes[1].getrawtransaction(segwit_tx_list[i], 0) == self.nodes[2].getrawtransaction(segwit_tx_list[i]))
            assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) != self.nodes[2].gettransaction(segwit_tx_list[i])["hex"])
            assert(self.nodes[1].getrawtransaction(segwit_tx_list[i]) == self.nodes[2].gettransaction(segwit_tx_list[i])["hex"])
            assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) == bytes_to_hex_str(tx.serialize_without_witness()))

        self.log.info("Verify witness txs without witness data are invalid after the fork")
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', wit_ids[NODE_2][WIT_V0][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', wit_ids[NODE_2][WIT_V1][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch) (code 64)', p2sh_ids[NODE_2][WIT_V0][2], sign=False, redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness) (code 64)', p2sh_ids[NODE_2][WIT_V1][2], sign=False, redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) #block 432
        self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) #block 433
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) #block 434
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) #block 435

        self.log.info("Verify sigops are counted in GBT with BIP141 rules after the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']})
        assert(tmpl['sizelimit'] >= 3999577)  # actual maximum size is lower due to minimum mandatory non-witness data
        assert(tmpl['weightlimit'] == 4000000)
        assert(tmpl['sigoplimit'] == 80000)
        assert(tmpl['transactions'][0]['txid'] == txid)
        assert(tmpl['transactions'][0]['sigops'] == 8)

        self.nodes[0].generate(1) # Mine a block to clear the gbt cache

        self.log.info("Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = FromHex(CTransaction(), hex_tx)
        assert(tx.wit.is_null()) # This should not be a segwit input
        assert(txid1 in self.nodes[0].getrawmempool())

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(CTxOut(int(49.99 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = FromHex(CTransaction(), tx2_hex)
        assert(not tx.wit.is_null())

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(CTxOut(int(49.95 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(ToHex(tx))
        assert(tx.wit.is_null())
        assert(txid3 in self.nodes[0].getrawmempool())

        # Now try calling getblocktemplate() without segwit support.
        template = self.nodes[0].getblocktemplate()

        # Check that tx1 is the only transaction of the 3 in the template.
        template_txids = [ t['txid'] for t in template['transactions'] ]
        assert(txid2 not in template_txids and txid3 not in template_txids)
        assert(txid1 in template_txids)

        # Check that running with segwit support results in all 3 being included.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [ t['txid'] for t in template['transactions'] ]
        assert(txid1 in template_txids)
        assert(txid2 in template_txids)
        assert(txid3 in template_txids)

        # Check that wtxid is properly reported in mempool entry
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16), tx.calc_sha256(True))

        # Mine a block to clear the gbt cache again.
        self.nodes[0].generate(1)

        self.log.info("Verify behaviour of importaddress, addwitnessaddress and listunspent")

        # Some public keys to be used later
        pubkeys = [
            "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242", # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
            "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF", # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
            "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E", # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
            "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538", # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
            "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228", # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
            "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC", # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
            "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84", # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
        ]

        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey("92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn")
        uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"]
        self.nodes[0].importprivkey("cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR")
        compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"]
        assert ((self.nodes[0].getaddressinfo(uncompressed_spendable_address[0])['iscompressed'] == False))
        assert ((self.nodes[0].getaddressinfo(compressed_spendable_address[0])['iscompressed'] == True))

        self.nodes[0].importpubkey(pubkeys[0])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
        self.nodes[0].importpubkey(pubkeys[1])
        compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
        self.nodes[0].importpubkey(pubkeys[2])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

        spendable_anytime = []                      # These outputs should be seen anytime after importprivkey and addmultisigaddress
        spendable_after_importaddress = []          # These outputs should be seen after importaddress
        solvable_after_importaddress = []           # These outputs should be seen after importaddress but not spendable
        unsolvable_after_importaddress = []         # These outputs should be unsolvable after importaddress
        solvable_anytime = []                       # These outputs should be solvable after importpubkey
        unseen_anytime = []                         # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])['address'])
        unknown_address = ["mtKKyoHabkk6e4ppT7NaM7THqPUt7AzPrT", "2NDP3jLWAFT8NDAiUa9qiE6oBt2awmMq7Dx"]

        # Test multisig_without_privkey
        # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
        # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

        multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]])['address']
        script = CScript([OP_2, hex_str_to_bytes(pubkeys[3]), hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG])
        solvable_after_importaddress.append(CScript([OP_HASH160, hash160(script), OP_EQUAL]))

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with compressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with compressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])
                # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # p2sh multisig with uncompressed keys should always be spendable
                spendable_anytime.extend([p2sh])
                # bare multisig can be watched and signed, but is not treated as ours
                solvable_after_importaddress.extend([bare])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be spendable
                spendable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        for i in uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                solvable_after_importaddress.extend([bare, p2sh])
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # normal P2PKH and P2PK with uncompressed keys should always be seen
                solvable_anytime.extend([p2pkh, p2pk])
                # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                # Witness output types with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

        op1 = CScript([OP_1])
        op0 = CScript([OP_0])
        # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
        unsolvable_address = ["mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V", "2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe", script_to_p2sh(op1), script_to_p2sh(op0)]
        unsolvable_address_key = hex_str_to_bytes("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D")
        unsolvablep2pkh = CScript([OP_DUP, OP_HASH160, hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG])
        unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)])
        p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL])
        p2wshop1 = CScript([OP_0, sha256(op1)])
        unsolvable_after_importaddress.append(unsolvablep2pkh)
        unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
        unsolvable_after_importaddress.append(op1) # OP_1 will be imported as script
        unsolvable_after_importaddress.append(p2wshop1)
        unseen_anytime.append(op0) # OP_0 will be imported as P2SH address with no script provided
        unsolvable_after_importaddress.append(p2shop0)

        spendable_txid = []
        solvable_txid = []
        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1))
        self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0)

        importlist = []
        for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                bare = hex_str_to_bytes(v['hex'])
                importlist.append(bytes_to_hex_str(bare))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(bare)])))
            else:
                pubkey = hex_str_to_bytes(v['pubkey'])
                p2pk = CScript([pubkey, OP_CHECKSIG])
                p2pkh = CScript([OP_DUP, OP_HASH160, hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG])
                importlist.append(bytes_to_hex_str(p2pk))
                importlist.append(bytes_to_hex_str(p2pkh))
                importlist.append(bytes_to_hex_str(CScript([OP_0, hash160(pubkey)])))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pk)])))
                importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pkh)])))

        importlist.append(bytes_to_hex_str(unsolvablep2pkh))
        importlist.append(bytes_to_hex_str(unsolvablep2wshp2pkh))
        importlist.append(bytes_to_hex_str(op1))
        importlist.append(bytes_to_hex_str(p2wshop1))

        for i in importlist:
            # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
            # exceptions and continue.
            try_rpc(-4, "The wallet already contains the private key for this address or script", self.nodes[0].importaddress, i, "", False, True)

        self.nodes[0].importaddress(script_to_p2sh(op0)) # import OP_0 as address only
        self.nodes[0].importaddress(multisig_without_privkey_address) # Test multisig_without_privkey

        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # addwitnessaddress should refuse to return a witness address if an uncompressed key is used
        # note that no witness address should be returned by unsolvable addresses
        for i in uncompressed_spendable_address + uncompressed_solvable_address + unknown_address + unsolvable_address:
            assert_raises_rpc_error(-4, "Public key or redeemscript not known to wallet, or the key is uncompressed", self.nodes[0].addwitnessaddress, i)

        # addwitnessaddress should return a witness addresses even if keys are not in the wallet
        self.nodes[0].addwitnessaddress(multisig_without_privkey_address)

        for i in compressed_spendable_address + compressed_solvable_address:
            witaddress = self.nodes[0].addwitnessaddress(i)
            # addwitnessaddress should return the same address if it is a known P2SH-witness address
            assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress))

        spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
        self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Repeat some tests. This time we don't add witness scripts with importaddress
        # Import a compressed key and an uncompressed key, generate some multisig addresses
        self.nodes[0].importprivkey("927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH")
        uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"]
        self.nodes[0].importprivkey("cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw")
        compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"]

        self.nodes[0].importpubkey(pubkeys[5])
        compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
        self.nodes[0].importpubkey(pubkeys[6])
        uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

        spendable_after_addwitnessaddress = []      # These outputs should be seen after importaddress
        solvable_after_addwitnessaddress=[]         # These outputs should be seen after importaddress but not spendable
        unseen_anytime = []                         # These outputs should never be seen
        solvable_anytime = []                       # These outputs should be solvable after importpubkey
        unseen_anytime = []                         # These outputs should never be seen

        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
        compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
        uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])['address'])
        compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])

        premature_witaddress = []

        for i in compressed_spendable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after addwitnessaddress
                spendable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh])
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH are always spendable
                spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in uncompressed_spendable_address + uncompressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                unseen_anytime.extend([p2wsh, p2sh_p2wsh])
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

        for i in compressed_solvable_address:
            v = self.nodes[0].getaddressinfo(i)
            if (v['isscript']):
                # P2WSH multisig without private key are seen after addwitnessaddress
                [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                solvable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh])
                premature_witaddress.append(script_to_p2sh(p2wsh))
            else:
                [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

        self.mine_and_test_listunspent(spendable_anytime, 2)
        self.mine_and_test_listunspent(solvable_anytime, 1)
        self.mine_and_test_listunspent(spendable_after_addwitnessaddress + solvable_after_addwitnessaddress + unseen_anytime, 0)

        # addwitnessaddress should refuse to return a witness address if an uncompressed key is used
        # note that a multisig address returned by addmultisigaddress is not solvable until it is added with importaddress
        # premature_witaddress are not accepted until the script is added with addwitnessaddress first
        for i in uncompressed_spendable_address + uncompressed_solvable_address + premature_witaddress:
            # This will raise an exception
            assert_raises_rpc_error(-4, "Public key or redeemscript not known to wallet, or the key is uncompressed", self.nodes[0].addwitnessaddress, i)

        # after importaddress it should pass addwitnessaddress
        v = self.nodes[0].getaddressinfo(compressed_solvable_address[1])
        self.nodes[0].importaddress(v['hex'],"",False,True)
        for i in compressed_spendable_address + compressed_solvable_address + premature_witaddress:
            witaddress = self.nodes[0].addwitnessaddress(i)
            assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress))

        spendable_txid.append(self.mine_and_test_listunspent(spendable_after_addwitnessaddress + spendable_anytime, 2))
        solvable_txid.append(self.mine_and_test_listunspent(solvable_after_addwitnessaddress + solvable_anytime, 1))
        self.mine_and_test_listunspent(unseen_anytime, 0)

        # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
        v1_addr = program_to_witness(1, [3,5])
        v1_tx = self.nodes[0].createrawtransaction([getutxo(spendable_txid[0])],{v1_addr: 1})
        v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['addresses'][0], v1_addr)
        assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

        # Check that spendable outputs are really spendable
        self.create_and_mine_tx_from_txids(spendable_txid)

        # import all the private keys so solvable addresses become spendable
        self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
        self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
        self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
        self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
        self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
        self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
        self.create_and_mine_tx_from_txids(solvable_txid)

        # Test that importing native P2WPKH/P2WSH scripts works
        for use_p2wsh in [False, True]:
            if use_p2wsh:
                scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
            else:
                scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

            self.nodes[1].importaddress(scriptPubKey, "", False)
            rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
            rawtxfund = self.nodes[1].signrawtransactionwithwallet(rawtxfund)["hex"]
            txid = self.nodes[1].sendrawtransaction(rawtxfund)

            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
            assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)

            # Assert it is properly saved
            self.stop_node(1)
            self.start_node(1)
            assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
            assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)
Esempio n. 43
0
def FromHex(obj, hex_string):
    """Deserialize from a hex string representation (eg from RPC)"""
    obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
    return obj
Esempio n. 44
0
    def run_test(self):
        self.url = urllib.parse.urlparse(self.nodes[0].url)
        self.log.info("Mine blocks and send Bitcoin to node 1")

        # Random address so node1's balance doesn't increase
        not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ"

        self.nodes[0].generate(1)
        self.sync_all()
        self.nodes[1].generatetoaddress(100, not_related_address)
        self.sync_all()

        assert_equal(self.nodes[0].getbalance(), 50)

        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        self.sync_all()
        self.nodes[1].generatetoaddress(1, not_related_address)
        self.sync_all()
        bb_hash = self.nodes[0].getbestblockhash()

        assert_equal(self.nodes[1].getbalance(), Decimal("0.1"))

        self.log.info("Load the transaction using the /tx URI")

        json_obj = self.test_rest_request("/tx/{}".format(txid))
        spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout'])  # get the vin to later check for utxo (should be spent by then)
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        self.log.info("Query an unspent TXO using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))

        # Check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is one utxo
        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1'))

        self.log.info("Query a spent TXO using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))

        # Check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is no utxo in the response because this outpoint has been spent
        assert_equal(len(json_obj['utxos']), 0)

        # Check bitmap
        assert_equal(json_obj['bitmap'], "0")

        self.log.info("Query two TXOs using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent)))

        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['bitmap'], "10")

        self.log.info("Query the TXOs using the /getutxos URI with a binary response")

        bin_request = b'\x01\x02'
        for txid, n in [spending, spent]:
            bin_request += hex_str_to_bytes(txid)
            bin_request += pack("i", n)

        bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES)
        output = BytesIO(bin_response)
        chain_height, = unpack("i", output.read(4))
        response_hash = binascii.hexlify(output.read(32)[::-1]).decode('ascii')

        assert_equal(bb_hash, response_hash)  # check if getutxo's chaintip during calculation was fine
        assert_equal(chain_height, 102)  # chain height must be 102

        self.log.info("Test the /getutxos URI with and without /checkmempool")
        # Create a transaction, check that it's found with /checkmempool, but
        # not found without. Then confirm the transaction and check that it's
        # found with or without /checkmempool.

        # do a tx and don't sync
        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        json_obj = self.test_rest_request("/tx/{}".format(txid))
        # get the spent output to later check for utxo (should be spent by then)
        spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout'])
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 0)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 0)

        self.nodes[0].generate(1)
        self.sync_all()

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        # Do some invalid requests
        self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ)

        # Test limits
        long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ)

        long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200)

        self.nodes[0].generate(1)  # generate block to not affect upcoming tests
        self.sync_all()

        self.log.info("Test the /block, /blockhashbyheight and /headers URIs")
        bb_hash = self.nodes[0].getbestblockhash()

        # Check result if block does not exists
        assert_equal(self.test_rest_request('/headers/1/0000000000000000000000000000000000000000000000000000000000000000'), [])
        self.test_rest_request('/block/0000000000000000000000000000000000000000000000000000000000000000', status=404, ret_type=RetType.OBJ)

        # Check result if block is not in the active chain
        self.nodes[0].invalidateblock(bb_hash)
        assert_equal(self.test_rest_request('/headers/1/{}'.format(bb_hash)), [])
        self.test_rest_request('/block/{}'.format(bb_hash))
        self.nodes[0].reconsiderblock(bb_hash)

        # Check binary format
        response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ)
        assert_greater_than(int(response.getheader('content-length')), 80)
        response_bytes = response.read()

        # Compare with block header
        response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ)
        assert_equal(int(response_header.getheader('content-length')), 80)
        response_header_bytes = response_header.read()
        assert_equal(response_bytes[:80], response_header_bytes)

        # Check block hex format
        response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than(int(response_hex.getheader('content-length')), 160)
        response_hex_bytes = response_hex.read().strip(b'\n')
        assert_equal(binascii.hexlify(response_bytes), response_hex_bytes)

        # Compare with hex block header
        response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than(int(response_header_hex.getheader('content-length')), 160)
        response_header_hex_bytes = response_header_hex.read(160)
        assert_equal(binascii.hexlify(response_bytes[:80]), response_header_hex_bytes)

        # Check json format
        block_json_obj = self.test_rest_request("/block/{}".format(bb_hash))
        assert_equal(block_json_obj['hash'], bb_hash)
        assert_equal(self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']))['blockhash'], bb_hash)

        # Check hex/bin format
        resp_hex = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_equal(resp_hex.read().decode('utf-8').rstrip(), bb_hash)
        resp_bytes = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.BIN, ret_type=RetType.BYTES)
        blockhash = binascii.hexlify(resp_bytes[::-1]).decode('utf-8')
        assert_equal(blockhash, bb_hash)

        # Check invalid blockhashbyheight requests
        resp = self.test_rest_request("/blockhashbyheight/abc", ret_type=RetType.OBJ, status=400)
        assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: abc")
        resp = self.test_rest_request("/blockhashbyheight/1000000", ret_type=RetType.OBJ, status=404)
        assert_equal(resp.read().decode('utf-8').rstrip(), "Block height out of range")
        resp = self.test_rest_request("/blockhashbyheight/-1", ret_type=RetType.OBJ, status=400)
        assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: -1")
        self.test_rest_request("/blockhashbyheight/", ret_type=RetType.OBJ, status=400)

        # Compare with json block header
        json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash))
        assert_equal(len(json_obj), 1)  # ensure that there is one header in the json response
        assert_equal(json_obj[0]['hash'], bb_hash)  # request/response hash should be the same

        # Compare with normal RPC block response
        rpc_block_json = self.nodes[0].getblock(bb_hash)
        for key in ['hash', 'confirmations', 'height', 'version', 'merkleroot', 'time', 'nonce', 'bits', 'difficulty', 'chainwork', 'previousblockhash']:
            assert_equal(json_obj[0][key], rpc_block_json[key])

        # See if we can get 5 headers in one response
        self.nodes[1].generate(5)
        self.sync_all()
        json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash))
        assert_equal(len(json_obj), 5)  # now we should have 5 header objects

        self.log.info("Test the /tx URI")

        tx_hash = block_json_obj['tx'][0]['txid']
        json_obj = self.test_rest_request("/tx/{}".format(tx_hash))
        assert_equal(json_obj['txid'], tx_hash)

        # Check hex format response
        hex_response = self.test_rest_request("/tx/{}".format(tx_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than_or_equal(int(hex_response.getheader('content-length')),
                                     json_obj['size']*2)

        self.log.info("Test tx inclusion in the /mempool and /block URIs")

        # Make 3 tx and mine them on node 1
        txs = []
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        txs.append(self.nodes[0].sendtoaddress(not_related_address, 11))
        self.sync_all()

        # Check that there are exactly 3 transactions in the TX memory pool before generating the block
        json_obj = self.test_rest_request("/mempool/info")
        assert_equal(json_obj['size'], 3)
        # the size of the memory pool should be greater than 3x ~100 bytes
        assert_greater_than(json_obj['bytes'], 300)

        # Check that there are our submitted transactions in the TX memory pool
        json_obj = self.test_rest_request("/mempool/contents")
        for i, tx in enumerate(txs):
            assert tx in json_obj
            assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2])
            assert_equal(json_obj[tx]['depends'], txs[i - 1:i])

        # Now mine the transactions
        newblockhash = self.nodes[1].generate(1)
        self.sync_all()

        # Check if the 3 tx show up in the new block
        json_obj = self.test_rest_request("/block/{}".format(newblockhash[0]))
        non_coinbase_txs = {tx['txid'] for tx in json_obj['tx']
                            if 'coinbase' not in tx['vin'][0]}
        assert_equal(non_coinbase_txs, set(txs))

        # Check the same but without tx details
        json_obj = self.test_rest_request("/block/notxdetails/{}".format(newblockhash[0]))
        for tx in txs:
            assert tx in json_obj['tx']

        self.log.info("Test the /chaininfo URI")

        bb_hash = self.nodes[0].getbestblockhash()

        json_obj = self.test_rest_request("/chaininfo")
        assert_equal(json_obj['bestblockhash'], bb_hash)
    def run_test(self):
        self.log.info('prepare some coins for multiple *rawtransaction commands')
        self.nodes[2].generate(1)
        self.sync_all()
        self.nodes[0].generate(101)
        self.sync_all()
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5)
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0)
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0)
        self.sync_all()
        self.nodes[0].generate(5)
        self.sync_all()

        self.log.info('Test getrawtransaction on genesis block coinbase returns an error')
        block = self.nodes[0].getblock(self.nodes[0].getblockhash(0))
        assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot'])

        self.log.info('Check parameter types and required parameters of createrawtransaction')
        # Test `createrawtransaction` required parameters
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction)
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [])

        # Test `createrawtransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo')

        # Test `createrawtransaction` invalid `inputs`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {})
        assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {})
        assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {})
        assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {})
        assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", self.nodes[0].createrawtransaction, [{'txid': 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844'}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {})
        assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {})

        # Test `createrawtransaction` invalid `outputs`
        address = self.nodes[0].getnewaddress()
        address2 = self.nodes[0].getnewaddress()
        assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo')
        self.nodes[0].createrawtransaction(inputs=[], outputs={})  # Should not throw for backwards compatibility
        self.nodes[0].createrawtransaction(inputs=[], outputs=[])
        assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'})
        assert_raises_rpc_error(-5, "Invalid Rhombus address", self.nodes[0].createrawtransaction, [], {'foo': 0})
        assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'})
        assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1})
        assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)]))
        assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}])
        assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}])
        assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")]))
        assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}])
        assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']])

        # Test `createrawtransaction` invalid `locktime`
        assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo')
        assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1)
        assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296)

        # Test `createrawtransaction` invalid `replaceable`
        assert_raises_rpc_error(-3, "Expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo')

        self.log.info('Check that createrawtransaction accepts an array and object as outputs')
        tx = CTransaction()
        # One output
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99}))))
        assert_equal(len(tx.vout), 1)
        assert_equal(
            tx.serialize().hex(),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]),
        )
        # Two outputs
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)])))))
        assert_equal(len(tx.vout), 2)
        assert_equal(
            tx.serialize().hex(),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]),
        )
        # Multiple mixed outputs
        tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')])))))
        assert_equal(len(tx.vout), 3)
        assert_equal(
            tx.serialize().hex(),
            self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}, {'data': '99'}]),
        )

        for type in ["bech32", "p2sh-segwit", "legacy"]:
            addr = self.nodes[0].getnewaddress("", type)
            addrinfo = self.nodes[0].getaddressinfo(addr)
            pubkey = addrinfo["scriptPubKey"]

            self.log.info('sendrawtransaction with missing prevtx info (%s)' %(type))

            # Test `signrawtransactionwithwallet` invalid `prevtxs`
            inputs  = [ {'txid' : txid, 'vout' : 3, 'sequence' : 1000}]
            outputs = { self.nodes[0].getnewaddress() : 1 }
            rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)

            prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1)
            succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
            assert succ["complete"]
            if type == "legacy":
                del prevtx["amount"]
                succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
                assert succ["complete"]

            if type != "legacy":
                assert_raises_rpc_error(-3, "Missing amount", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                    {
                        "txid": txid,
                        "scriptPubKey": pubkey,
                        "vout": 3,
                    }
                ])

            assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "txid": txid,
                    "scriptPubKey": pubkey,
                    "amount": 1,
                }
            ])
            assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "scriptPubKey": pubkey,
                    "vout": 3,
                    "amount": 1,
                }
            ])
            assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransactionwithwallet, rawtx, [
                {
                    "txid": txid,
                    "vout": 3,
                    "amount": 1
                }
            ])

        #########################################
        # sendrawtransaction with missing input #
        #########################################

        self.log.info('sendrawtransaction with missing input')
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists
        outputs = { self.nodes[0].getnewaddress() : 4.998 }
        rawtx   = self.nodes[2].createrawtransaction(inputs, outputs)
        rawtx   = self.nodes[2].signrawtransactionwithwallet(rawtx)

        # This will raise an exception since there are missing inputs
        assert_raises_rpc_error(-25, "bad-txns-inputs-missingorspent", self.nodes[2].sendrawtransaction, rawtx['hex'])

        #####################################
        # getrawtransaction with block hash #
        #####################################

        # make a tx by sending then generate 2 blocks; block1 has the tx in it
        tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1)
        block1, block2 = self.nodes[2].generate(2)
        self.sync_all()
        # We should be able to get the raw transaction by providing the correct block
        gottx = self.nodes[0].getrawtransaction(tx, True, block1)
        assert_equal(gottx['txid'], tx)
        assert_equal(gottx['in_active_chain'], True)
        # We should not have the 'in_active_chain' flag when we don't provide a block
        gottx = self.nodes[0].getrawtransaction(tx, True)
        assert_equal(gottx['txid'], tx)
        assert 'in_active_chain' not in gottx
        # We should not get the tx if we provide an unrelated block
        assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2)
        # An invalid block hash should raise the correct errors
        assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].getrawtransaction, tx, True, True)
        assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[0].getrawtransaction, tx, True, "foobar")
        assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[0].getrawtransaction, tx, True, "abcd1234")
        assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].getrawtransaction, tx, True, "ZZZ0000000000000000000000000000000000000000000000000000000000000")
        assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000")
        # Undo the blocks and check in_active_chain
        self.nodes[0].invalidateblock(block1)
        gottx = self.nodes[0].getrawtransaction(txid=tx, verbose=True, blockhash=block1)
        assert_equal(gottx['in_active_chain'], False)
        self.nodes[0].reconsiderblock(block1)
        assert_equal(self.nodes[0].getbestblockhash(), block2)

        #########################
        # RAW TX MULTISIG TESTS #
        #########################
        # 2of2 test
        addr1 = self.nodes[2].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[2].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)

        # Tests for createmultisig and addmultisigaddress
        assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"])
        self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # createmultisig can only take public keys
        assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here.

        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address']

        #use balance deltas instead of absolute values
        bal = self.nodes[2].getbalance()

        # send 1.2 BTC to msig adr
        txId = self.nodes[0].sendtoaddress(mSigObj, 1.2)
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance


        # 2of3 test from different nodes
        bal = self.nodes[2].getbalance()
        addr1 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()
        addr3 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[1].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)
        addr3Obj = self.nodes[2].getaddressinfo(addr3)

        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address']

        txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
        decTx = self.nodes[0].gettransaction(txId)
        rawTx = self.nodes[0].decoderawtransaction(decTx['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()

        #THIS IS AN INCOMPLETE FEATURE
        #NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION
        assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable

        txDetails = self.nodes[0].gettransaction(txId, True)
        rawTx = self.nodes[0].decoderawtransaction(txDetails['hex'])
        vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('2.20000000'))

        bal = self.nodes[0].getbalance()
        inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "amount" : vout['value']}]
        outputs = { self.nodes[0].getnewaddress() : 2.19 }
        rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs)
        assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx

        rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs)
        assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys
        self.nodes[2].sendrawtransaction(rawTxSigned['hex'])
        rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx

        # 2of2 test for combining transactions
        bal = self.nodes[2].getbalance()
        addr1 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[2].getnewaddress()

        addr1Obj = self.nodes[1].getaddressinfo(addr1)
        addr2Obj = self.nodes[2].getaddressinfo(addr2)

        self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
        mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
        mSigObjValid = self.nodes[2].getaddressinfo(mSigObj)

        txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
        decTx = self.nodes[0].gettransaction(txId)
        rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex'])
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()

        assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable

        txDetails = self.nodes[0].gettransaction(txId, True)
        rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex'])
        vout = next(o for o in rawTx2['vout'] if o['value'] == Decimal('2.20000000'))

        bal = self.nodes[0].getbalance()
        inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}]
        outputs = { self.nodes[0].getnewaddress() : 2.19 }
        rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned1)
        assert_equal(rawTxPartialSigned1['complete'], False) #node1 only has one key, can't comp. sign the tx

        rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned2)
        assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx
        rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']])
        self.log.debug(rawTxComb)
        self.nodes[2].sendrawtransaction(rawTxComb)
        rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb)
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx

        # decoderawtransaction tests
        # witness transaction
        encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
        assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction
        # non-witness transaction
        encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))

        # getrawtransaction tests
        # 1. valid parameters - only supply txid
        txId = rawTx["txid"]
        assert_equal(self.nodes[0].getrawtransaction(txId), rawTxSigned['hex'])

        # 2. valid parameters - supply txid and 0 for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txId, 0), rawTxSigned['hex'])

        # 3. valid parameters - supply txid and False for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txId, False), rawTxSigned['hex'])

        # 4. valid parameters - supply txid and 1 for verbose.
        # We only check the "hex" field of the output so we don't need to update this test every time the output format changes.
        assert_equal(self.nodes[0].getrawtransaction(txId, 1)["hex"], rawTxSigned['hex'])

        # 5. valid parameters - supply txid and True for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txId, True)["hex"], rawTxSigned['hex'])

        # 6. invalid parameters - supply txid and string "Flase"
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, "Flase")

        # 7. invalid parameters - supply txid and empty array
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, [])

        # 8. invalid parameters - supply txid and empty dict
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, {})

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 1000)

        # 9. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        # 10. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 4294967294)

        ####################################
        # TRANSACTION VERSION NUMBER TESTS #
        ####################################

        # Test the minimum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = -0x80000000
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], -0x80000000)

        """
        # Collides with rhombus version
        # Test the maximum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = 0x7fffffff
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], 0x7fffffff)
        """

        self.log.info('sendrawtransaction/testmempoolaccept with maxfeerate')

        # Test a transaction with a small fee.
        txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0)
        rawTx = self.nodes[0].getrawtransaction(txId, True)
        vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('1.00000000'))

        self.sync_all()
        inputs = [{ "txid" : txId, "vout" : vout['n'] }]
        # Fee 10,000 satoshis, (1 - (10000 sat * 0.00000001 BTC/sat)) = 0.9999
        outputs = { self.nodes[0].getnewaddress() : Decimal("0.99990000") }
        rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx)
        assert_equal(rawTxSigned['complete'], True)
        # Fee 10,000 satoshis, ~100 b transaction, fee rate should land around 100 sat/byte = 0.00100000 BTC/kB
        # Thus, testmempoolaccept should reject
        testres = self.nodes[2].testmempoolaccept([rawTxSigned['hex']], 0.00001000)[0]
        assert_equal(testres['allowed'], False)
        assert_equal(testres['reject-reason'], 'absurdly-high-fee')
        # and sendrawtransaction should throw
        assert_raises_rpc_error(-26, "absurdly-high-fee", self.nodes[2].sendrawtransaction, rawTxSigned['hex'], 0.00001000)
        # and the following calls should both succeed
        testres = self.nodes[2].testmempoolaccept(rawtxs=[rawTxSigned['hex']])[0]
        assert_equal(testres['allowed'], True)
        self.nodes[2].sendrawtransaction(hexstring=rawTxSigned['hex'])

        # Test a transaction with a large fee.
        txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0)
        rawTx = self.nodes[0].getrawtransaction(txId, True)
        vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('1.00000000'))

        self.sync_all()
        inputs = [{ "txid" : txId, "vout" : vout['n'] }]
        # Fee 2,000,000 satoshis, (1 - (2000000 sat * 0.00000001 BTC/sat)) = 0.98
        outputs = { self.nodes[0].getnewaddress() : Decimal("0.98000000") }
        rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx)
        assert_equal(rawTxSigned['complete'], True)
        # Fee 2,000,000 satoshis, ~100 b transaction, fee rate should land around 20,000 sat/byte = 0.20000000 BTC/kB
        # Thus, testmempoolaccept should reject
        testres = self.nodes[2].testmempoolaccept([rawTxSigned['hex']])[0]
        assert_equal(testres['allowed'], False)
        assert_equal(testres['reject-reason'], 'absurdly-high-fee')
        # and sendrawtransaction should throw
        assert_raises_rpc_error(-26, "absurdly-high-fee", self.nodes[2].sendrawtransaction, rawTxSigned['hex'])
        # and the following calls should both succeed
        testres = self.nodes[2].testmempoolaccept(rawtxs=[rawTxSigned['hex']], maxfeerate='0.20000000')[0]
        assert_equal(testres['allowed'], True)
        self.nodes[2].sendrawtransaction(hexstring=rawTxSigned['hex'], maxfeerate='0.20000000')
Esempio n. 46
0
    def decoderawtransaction_asm_sighashtype(self):
        """Test decoding scripts via RPC command "decoderawtransaction".

        This test is in with the "decodescript" tests because they are testing the same "asm" script decodes.
        """

        # this test case uses a random plain vanilla mainnet transaction with a single P2PKH input and output
        tx = '0100000001696a20784a2c70143f634e95227dbdfdf0ecd51647052e70854512235f5986ca010000008a47304402207174775824bec6c2700023309a168231ec80b82c6069282f5133e6f11cbb04460220570edc55c7c5da2ca687ebd0372d3546ebc3f810516a002350cac72dfe192dfb014104d3f898e6487787910a690410b7a917ef198905c27fb9d3b0a42da12aceae0544fc7088d239d9a48f2828a15a09e84043001f27cc80d162cb95404e1210161536ffffffff0100e1f505000000001976a914eb6c6e0cdb2d256a32d97b8df1fc75d1920d9bca88ac00000000'
        rpc_result = self.nodes[0].decoderawtransaction(tx)
        assert_equal(
            '304402207174775824bec6c2700023309a168231ec80b82c6069282f5133e6f11cbb04460220570edc55c7c5da2ca687ebd0372d3546ebc3f810516a002350cac72dfe192dfb[ALL] 04d3f898e6487787910a690410b7a917ef198905c27fb9d3b0a42da12aceae0544fc7088d239d9a48f2828a15a09e84043001f27cc80d162cb95404e1210161536',
            rpc_result['vin'][0]['scriptSig']['asm'])

        # this test case uses a mainnet transaction that has a P2SH input and both P2PKH and P2SH outputs.
        # it's from James D'Angelo's awesome introductory videos about multisig: https://www.youtube.com/watch?v=zIbUSaZBJgU and https://www.youtube.com/watch?v=OSA1pwlaypc
        # verify that we have not altered scriptPubKey decoding.
        tx = '01000000018d1f5635abd06e2c7e2ddf58dc85b3de111e4ad6e0ab51bb0dcf5e84126d927300000000fdfe0000483045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea01483045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75014c695221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53aeffffffff02611e0000000000001976a914dc863734a218bfe83ef770ee9d41a27f824a6e5688acee2a02000000000017a9142a5edea39971049a540474c6a99edf0aa4074c588700000000'
        rpc_result = self.nodes[0].decoderawtransaction(tx)
        assert_equal(
            '8e3730608c3b0bb5df54f09076e196bc292a8e39a78e73b44b6ba08c78f5cbb0',
            rpc_result['txid'])
        assert_equal(
            '0 3045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea[ALL] 3045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75[ALL] 5221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53ae',
            rpc_result['vin'][0]['scriptSig']['asm'])
        assert_equal(
            'OP_DUP OP_HASH160 dc863734a218bfe83ef770ee9d41a27f824a6e56 OP_EQUALVERIFY OP_CHECKSIG',
            rpc_result['vout'][0]['scriptPubKey']['asm'])
        assert_equal(
            'OP_HASH160 2a5edea39971049a540474c6a99edf0aa4074c58 OP_EQUAL',
            rpc_result['vout'][1]['scriptPubKey']['asm'])
        txSave = CTransaction()
        txSave.deserialize(BytesIO(hex_str_to_bytes(tx)))

        # make sure that a specifically crafted op_return value will not pass all the IsDERSignature checks and then get decoded as a sighash type
        tx = '01000000015ded05872fdbda629c7d3d02b194763ce3b9b1535ea884e3c8e765d42e316724020000006b48304502204c10d4064885c42638cbff3585915b322de33762598321145ba033fc796971e2022100bb153ad3baa8b757e30a2175bd32852d2e1cb9080f84d7e32fcdfd667934ef1b012103163c0ff73511ea1743fb5b98384a2ff09dd06949488028fd819f4d83f56264efffffffff0200000000000000000b6a0930060201000201000180380100000000001976a9141cabd296e753837c086da7a45a6c2fe0d49d7b7b88ac00000000'
        rpc_result = self.nodes[0].decoderawtransaction(tx)
        assert_equal('OP_RETURN 300602010002010001',
                     rpc_result['vout'][0]['scriptPubKey']['asm'])

        # verify that we have not altered scriptPubKey processing even of a specially crafted P2PKH pubkeyhash and P2SH redeem script hash that is made to pass the der signature checks
        tx = '01000000018d1f5635abd06e2c7e2ddf58dc85b3de111e4ad6e0ab51bb0dcf5e84126d927300000000fdfe0000483045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea01483045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75014c695221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53aeffffffff02611e0000000000001976a914301102070101010101010102060101010101010188acee2a02000000000017a91430110207010101010101010206010101010101018700000000'
        rpc_result = self.nodes[0].decoderawtransaction(tx)
        assert_equal(
            'OP_DUP OP_HASH160 3011020701010101010101020601010101010101 OP_EQUALVERIFY OP_CHECKSIG',
            rpc_result['vout'][0]['scriptPubKey']['asm'])
        assert_equal(
            'OP_HASH160 3011020701010101010101020601010101010101 OP_EQUAL',
            rpc_result['vout'][1]['scriptPubKey']['asm'])

        # some more full transaction tests of varying specific scriptSigs. used instead of
        # tests in decodescript_script_sig because the decodescript RPC is specifically
        # for working on scriptPubKeys (argh!).
        push_signature = bytes_to_hex_str(
            txSave.vin[0].scriptSig)[2:(0x48 * 2 + 4)]
        signature = push_signature[2:]
        der_signature = signature[:-2]
        signature_sighash_decoded = der_signature + '[ALL]'
        signature_2 = der_signature + '82'
        push_signature_2 = '48' + signature_2
        signature_2_sighash_decoded = der_signature + '[NONE|ANYONECANPAY]'

        # 1) P2PK scriptSig
        txSave.vin[0].scriptSig = hex_str_to_bytes(push_signature)
        rpc_result = self.nodes[0].decoderawtransaction(
            bytes_to_hex_str(txSave.serialize()))
        assert_equal(signature_sighash_decoded,
                     rpc_result['vin'][0]['scriptSig']['asm'])

        # make sure that the sighash decodes come out correctly for a more complex / lesser used case.
        txSave.vin[0].scriptSig = hex_str_to_bytes(push_signature_2)
        rpc_result = self.nodes[0].decoderawtransaction(
            bytes_to_hex_str(txSave.serialize()))
        assert_equal(signature_2_sighash_decoded,
                     rpc_result['vin'][0]['scriptSig']['asm'])

        # 2) multisig scriptSig
        txSave.vin[0].scriptSig = hex_str_to_bytes('00' + push_signature +
                                                   push_signature_2)
        rpc_result = self.nodes[0].decoderawtransaction(
            bytes_to_hex_str(txSave.serialize()))
        assert_equal(
            '0 ' + signature_sighash_decoded + ' ' +
            signature_2_sighash_decoded,
            rpc_result['vin'][0]['scriptSig']['asm'])

        # 3) test a scriptSig that contains more than push operations.
        # in fact, it contains an OP_RETURN with data specially crafted to cause improper decode if the code does not catch it.
        txSave.vin[0].scriptSig = hex_str_to_bytes(
            '6a143011020701010101010101020601010101010101')
        rpc_result = self.nodes[0].decoderawtransaction(
            bytes_to_hex_str(txSave.serialize()))
        assert_equal('OP_RETURN 3011020701010101010101020601010101010101',
                     rpc_result['vin'][0]['scriptSig']['asm'])
Esempio n. 47
0
 def p2sh_address_to_script(self,v):
     bare = CScript(hex_str_to_bytes(v['hex']))
     p2sh = CScript(hex_str_to_bytes(v['scriptPubKey']))
     p2wsh = CScript([OP_0, sha256(bare)])
     p2sh_p2wsh = CScript([OP_HASH160, hash160(p2wsh), OP_EQUAL])
     return([bare, p2sh, p2wsh, p2sh_p2wsh])
Esempio n. 48
0
    def run_test(self):
        self.nodes[0].add_p2p_connection(P2PDataStore())

        self.log.info("Generate blocks in the past for coinbase outputs.")
        start_time = 1510247077 + 600 * 1000 + 101
        long_past_time = start_time - 600 * 1000  # enough to build up to 1000 blocks 10 minutes apart without worrying about getting into the future
        self.nodes[0].setmocktime(
            long_past_time - 100
        )  # enough so that the generated blocks will still all be before long_past_time
        self.coinbase_blocks = self.nodes[0].generate(
            1 + 16 + 2 * 32 + 1)  # 82 blocks generated for inputs
        self.nodes[0].setmocktime(
            0
        )  # set time back to present so yielded blocks aren't in the future as we advance last_block_time
        self.tipheight = 82  # height of the next block to build
        self.last_block_time = long_past_time
        self.tip = int(self.nodes[0].getbestblockhash(), 16)
        self.nodeaddress = self.nodes[0].getnewaddress()

        self.log.info("Test that the csv softfork is DEFINED")
        assert_equal(
            get_bip9_status(self.nodes[0], 'csv')['status'], 'defined')
        test_blocks = self.generate_blocks(61, 4)
        # Fail to achieve LOCKED_IN 100 out of 144 signal bit 0
        # using a variety of bits to simulate multiple parallel softforks
        test_blocks = self.generate_blocks(
            50, 536870913, test_blocks)  # 0x20000001 (signalling ready)
        test_blocks = self.generate_blocks(
            20, 4, test_blocks)  # 0x00000004 (signalling not)
        test_blocks = self.generate_blocks(
            50, 536871169, test_blocks)  # 0x20000101 (signalling ready)
        test_blocks = self.generate_blocks(
            24, 536936448, test_blocks)  # 0x20010000 (signalling not)

        # 108 out of 144 signal bit 0 to achieve lock-in
        # using a variety of bits to simulate multiple parallel softforks
        test_blocks = self.generate_blocks(
            58, 536870913, test_blocks)  # 0x20000001 (signalling ready)
        test_blocks = self.generate_blocks(
            26, 4, test_blocks)  # 0x00000004 (signalling not)
        test_blocks = self.generate_blocks(
            50, 536871169, test_blocks)  # 0x20000101 (signalling ready)
        test_blocks = self.generate_blocks(
            10, 536936448, test_blocks)  # 0x20010000 (signalling not)

        # 140 more version 4 blocks
        test_blocks = self.generate_blocks(130, 4, test_blocks)

        extend_txs = []
        # split 50 coinbases into 2 unspents so we have enough unspent txs
        for coinbase_block in self.coinbase_blocks[0:50]:
            amount = (INITIAL_BLOCK_REWARD - 0.01) / 2.0
            addr_a = self.nodes[0].getnewaddress()
            addr_b = self.nodes[0].getnewaddress()
            inputs = [{
                'txid': self.nodes[0].getblock(coinbase_block)['tx'][0],
                'vout': 0
            }]
            outputs = {addr_a: amount, addr_b: amount}
            rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
            res = self.nodes[0].signrawtransactionwithwallet(rawtx)
            rawtx = res['hex']
            tx = CTransaction()
            f = BytesIO(hex_str_to_bytes(rawtx))
            tx.deserialize(f)
            extend_txs.append(tx)
        test_blocks = self.generate_blocks(10,
                                           4,
                                           test_blocks,
                                           extend_txs=extend_txs)

        self.sync_blocks(test_blocks[0:61], request_block=True)
        # Advanced from DEFINED to STARTED, height = 143
        print(self.nodes[0].getblockcount())

        #self.log.info("Advance from DEFINED to STARTED, height = 143")
        assert_equal(
            get_bip9_status(self.nodes[0], 'csv')['status'], 'started')

        #self.log.info("Fail to achieve LOCKED_IN")
        self.sync_blocks(test_blocks[61:61 + 144])  # 2
        # Failed to advance past STARTED, height = 287
        assert_equal(
            get_bip9_status(self.nodes[0], 'csv')['status'], 'started')
        self.sync_blocks(test_blocks[61 + 144:61 + 144 + 144])  # 3
        # Advanced from STARTED to LOCKED_IN, height = 431
        assert_equal(
            get_bip9_status(self.nodes[0], 'csv')['status'], 'locked_in')

        self.sync_blocks(test_blocks[61 + 144 + 144:61 + 144 + 144 + 130])  # 4

        self.sync_blocks(test_blocks[61 + 144 + 144 + 130:61 + 144 + 144 +
                                     130 + 10])  # 4

        self.nodes[0].generate(1)
        self.tip = int("0x" + self.nodes[0].getbestblockhash(), 0)
        self.tipheight += 1
        self.last_block_time += 600

        self.unspents = []
        for unspent in self.nodes[0].listunspent():
            if unspent['spendable']:
                self.unspents.append(
                    (unspent['txid'], unspent['vout'], unspent['amount']))

        # Inputs at height = 572
        #
        # Put inputs for all tests in the chain at height 572 (tip now = 571) (time increases by 600s per block)
        # Note we reuse inputs for v1 and v2 txs so must test these separately
        # 16 normal inputs
        bip68inputs = []
        for i in range(16):
            bip68inputs.append(
                send_generic_unspent_input_tx(self.nodes[0],
                                              self.unspents.pop(),
                                              self.nodeaddress))

        # 2 sets of 16 inputs with 10 OP_CSV OP_DROP (actually will be prepended to spending scriptSig)
        bip112basicinputs = []
        for j in range(2):
            inputs = []
            for i in range(16):
                inputs.append(
                    send_generic_unspent_input_tx(self.nodes[0],
                                                  self.unspents.pop(),
                                                  self.nodeaddress))
            bip112basicinputs.append(inputs)

        # 2 sets of 16 varied inputs with (relative_lock_time) OP_CSV OP_DROP (actually will be prepended to spending scriptSig)
        bip112diverseinputs = []
        for j in range(2):
            inputs = []
            for i in range(16):
                inputs.append(
                    send_generic_unspent_input_tx(self.nodes[0],
                                                  self.unspents.pop(),
                                                  self.nodeaddress))
            bip112diverseinputs.append(inputs)

        # 1 special input with -1 OP_CSV OP_DROP (actually will be prepended to spending scriptSig)
        bip112specialinput = send_generic_unspent_input_tx(
            self.nodes[0], self.unspents.pop(), self.nodeaddress)

        # 1 normal input
        bip113input = send_generic_unspent_input_tx(self.nodes[0],
                                                    self.unspents.pop(),
                                                    self.nodeaddress)

        self.nodes[0].setmocktime(self.last_block_time + 600)
        inputblockhash = self.nodes[0].generate(1)[
            0]  # 1 block generated for inputs to be in chain at height 572
        self.nodes[0].setmocktime(0)
        self.tip = int(inputblockhash, 16)
        self.tipheight += 1
        self.last_block_time += 600
        assert_equal(len(self.nodes[0].getblock(inputblockhash, True)["tx"]),
                     82 + 1)

        # 2 more version 4 blocks
        test_blocks = self.generate_blocks(1, 4)
        self.sync_blocks(test_blocks)

        self.log.info(
            "Not yet advanced to ACTIVE, height = 574 (will activate for block 576, not 575)"
        )
        assert_equal(
            get_bip9_status(self.nodes[0], 'csv')['status'], 'locked_in')

        # Test both version 1 and version 2 transactions for all tests
        # BIP113 test transaction will be modified before each use to put in appropriate block time
        bip113tx_v1 = create_transaction(self.nodes[0],
                                         bip113input,
                                         self.nodeaddress,
                                         amount=Decimal("49.98"))
        bip113tx_v1.vin[0].nSequence = 0xFFFFFFFE
        bip113tx_v1.nVersion = 1
        bip113tx_v2 = create_transaction(self.nodes[0],
                                         bip113input,
                                         self.nodeaddress,
                                         amount=Decimal("49.98"))
        bip113tx_v2.vin[0].nSequence = 0xFFFFFFFE
        bip113tx_v2.nVersion = 2

        # For BIP68 test all 16 relative sequence locktimes
        bip68txs_v1 = create_bip68txs(self.nodes[0], bip68inputs, 1,
                                      self.nodeaddress)
        bip68txs_v2 = create_bip68txs(self.nodes[0], bip68inputs, 2,
                                      self.nodeaddress)

        # For BIP112 test:
        # 16 relative sequence locktimes of 10 against 10 OP_CSV OP_DROP inputs
        bip112txs_vary_nSequence_v1 = create_bip112txs(self.nodes[0],
                                                       bip112basicinputs[0],
                                                       False, 1,
                                                       self.nodeaddress)
        bip112txs_vary_nSequence_v2 = create_bip112txs(self.nodes[0],
                                                       bip112basicinputs[0],
                                                       False, 2,
                                                       self.nodeaddress)
        # 16 relative sequence locktimes of 9 against 10 OP_CSV OP_DROP inputs
        bip112txs_vary_nSequence_9_v1 = create_bip112txs(
            self.nodes[0], bip112basicinputs[1], False, 1, self.nodeaddress,
            -1)
        bip112txs_vary_nSequence_9_v2 = create_bip112txs(
            self.nodes[0], bip112basicinputs[1], False, 2, self.nodeaddress,
            -1)
        # sequence lock time of 10 against 16 (relative_lock_time) OP_CSV OP_DROP inputs
        bip112txs_vary_OP_CSV_v1 = create_bip112txs(self.nodes[0],
                                                    bip112diverseinputs[0],
                                                    True, 1, self.nodeaddress)
        bip112txs_vary_OP_CSV_v2 = create_bip112txs(self.nodes[0],
                                                    bip112diverseinputs[0],
                                                    True, 2, self.nodeaddress)
        # sequence lock time of 9 against 16 (relative_lock_time) OP_CSV OP_DROP inputs
        bip112txs_vary_OP_CSV_9_v1 = create_bip112txs(self.nodes[0],
                                                      bip112diverseinputs[1],
                                                      True, 1,
                                                      self.nodeaddress, -1)
        bip112txs_vary_OP_CSV_9_v2 = create_bip112txs(self.nodes[0],
                                                      bip112diverseinputs[1],
                                                      True, 2,
                                                      self.nodeaddress, -1)
        # -1 OP_CSV OP_DROP input
        bip112tx_special_v1 = create_bip112special(self.nodes[0],
                                                   bip112specialinput, 1,
                                                   self.nodeaddress)
        bip112tx_special_v2 = create_bip112special(self.nodes[0],
                                                   bip112specialinput, 2,
                                                   self.nodeaddress)

        self.log.info("TESTING")

        self.log.info("Pre-Soft Fork Tests. All txs should pass.")
        self.log.info("Test version 1 txs")

        success_txs = []
        # add BIP113 tx and -1 CSV tx
        bip113tx_v1.nLockTime = self.last_block_time - 600 * 5  # = MTP of prior block (not <) but < time put on current block
        bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1)
        success_txs.append(bip113signed1)
        success_txs.append(bip112tx_special_v1)
        # add BIP 68 txs
        success_txs.extend(all_rlt_txs(bip68txs_v1))
        # add BIP 112 with seq=10 txs
        success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_v1))
        success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_v1))
        # try BIP 112 with seq=9 txs
        success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_9_v1))
        success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_9_v1))
        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        self.log.info("Test version 2 txs")

        success_txs = []
        # add BIP113 tx and -1 CSV tx
        bip113tx_v2.nLockTime = self.last_block_time - 600 * 5  # = MTP of prior block (not <) but < time put on current block
        bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2)
        success_txs.append(bip113signed2)
        success_txs.append(bip112tx_special_v2)
        # add BIP 68 txs
        success_txs.extend(all_rlt_txs(bip68txs_v2))
        # add BIP 112 with seq=10 txs
        success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_v2))
        success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_v2))
        # try BIP 112 with seq=9 txs
        success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_9_v2))
        success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_9_v2))
        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # 1 more version 4 block to get us to height 575 so the fork should now be active for the next block
        test_blocks = self.generate_blocks(1, 4)
        self.sync_blocks(test_blocks)
        assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'active')

        self.log.info("Post-Soft Fork Tests.")

        self.log.info("BIP 113 tests")
        # BIP 113 tests should now fail regardless of version number if nLockTime isn't satisfied by new rules
        bip113tx_v1.nLockTime = self.last_block_time - 600 * 5  # = MTP of prior block (not <) but < time put on current block
        bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1)
        bip113tx_v2.nLockTime = self.last_block_time - 600 * 5  # = MTP of prior block (not <) but < time put on current block
        bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2)
        for bip113tx in [bip113signed1, bip113signed2]:
            self.sync_blocks([self.create_test_block([bip113tx])],
                             success=False)
        # BIP 113 tests should now pass if the locktime is < MTP
        bip113tx_v1.nLockTime = self.last_block_time - 600 * 5 - 1  # < MTP of prior block
        bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1)
        bip113tx_v2.nLockTime = self.last_block_time - 600 * 5 - 1  # < MTP of prior block
        bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2)
        for bip113tx in [bip113signed1, bip113signed2]:
            self.sync_blocks([self.create_test_block([bip113tx])])
            self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Next block height = 580 after 4 blocks of random version
        test_blocks = self.generate_blocks(4, 1234)
        self.sync_blocks(test_blocks)

        self.log.info("BIP 68 tests")
        self.log.info("Test version 1 txs - all should still pass")

        success_txs = []
        success_txs.extend(all_rlt_txs(bip68txs_v1))
        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        self.log.info("Test version 2 txs")

        # All txs with SEQUENCE_LOCKTIME_DISABLE_FLAG set pass
        bip68success_txs = [tx['tx'] for tx in bip68txs_v2 if tx['sdf']]
        self.sync_blocks([self.create_test_block(bip68success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # All txs without flag fail as we are at delta height = 8 < 10 and delta time = 8 * 600 < 10 * 512
        bip68timetxs = [
            tx['tx'] for tx in bip68txs_v2 if not tx['sdf'] and tx['stf']
        ]
        for tx in bip68timetxs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        bip68heighttxs = [
            tx['tx'] for tx in bip68txs_v2 if not tx['sdf'] and not tx['stf']
        ]
        for tx in bip68heighttxs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        # Advance one block to 581
        test_blocks = self.generate_blocks(1, 1234)
        self.sync_blocks(test_blocks)

        # Height txs should fail and time txs should now pass 9 * 600 > 10 * 512
        bip68success_txs.extend(bip68timetxs)
        self.sync_blocks([self.create_test_block(bip68success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        for tx in bip68heighttxs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        # Advance one block to 583
        test_blocks = self.generate_blocks(2, 1234)
        self.sync_blocks(test_blocks)

        # All BIP 68 txs should pass
        bip68success_txs.extend(bip68heighttxs)
        self.sync_blocks([self.create_test_block(bip68success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        self.log.info("BIP 112 tests")
        self.log.info("Test version 1 txs")

        # -1 OP_CSV tx should fail
        self.sync_blocks([self.create_test_block([bip112tx_special_v1])],
                         success=False)
        # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in argument to OP_CSV, version 1 txs should still pass

        success_txs = [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_v1 if tx['sdf']
        ]
        success_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if tx['sdf']
        ]
        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # If SEQUENCE_LOCKTIME_DISABLE_FLAG is unset in argument to OP_CSV, version 1 txs should now fail
        fail_txs = all_rlt_txs(bip112txs_vary_nSequence_v1)
        fail_txs += all_rlt_txs(bip112txs_vary_nSequence_9_v1)
        fail_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if not tx['sdf']
        ]
        fail_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if not tx['sdf']
        ]
        for tx in fail_txs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        self.log.info("Test version 2 txs")

        # -1 OP_CSV tx should fail
        self.sync_blocks([self.create_test_block([bip112tx_special_v2])],
                         success=False)

        # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in argument to OP_CSV, version 2 txs should pass (all sequence locks are met)
        success_txs = [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_v2 if tx['sdf']
        ]
        success_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v2 if tx['sdf']
        ]

        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # SEQUENCE_LOCKTIME_DISABLE_FLAG is unset in argument to OP_CSV for all remaining txs ##

        # All txs with nSequence 9 should fail either due to earlier mismatch or failing the CSV check
        fail_txs = all_rlt_txs(bip112txs_vary_nSequence_9_v2)
        fail_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v2 if not tx['sdf']
        ]
        for tx in fail_txs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in nSequence, tx should fail
        fail_txs = [
            tx['tx'] for tx in bip112txs_vary_nSequence_v2 if tx['sdf']
        ]
        for tx in fail_txs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        # If sequencelock types mismatch, tx should fail
        fail_txs = [
            tx['tx'] for tx in bip112txs_vary_nSequence_v2
            if not tx['sdf'] and tx['stf']
        ]
        fail_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_v2
            if not tx['sdf'] and tx['stf']
        ]
        for tx in fail_txs:
            self.sync_blocks([self.create_test_block([tx])], success=False)

        # Remaining txs should pass, just test masking works properly
        success_txs = [
            tx['tx'] for tx in bip112txs_vary_nSequence_v2
            if not tx['sdf'] and not tx['stf']
        ]
        success_txs += [
            tx['tx'] for tx in bip112txs_vary_OP_CSV_v2
            if not tx['sdf'] and not tx['stf']
        ]
        self.sync_blocks([self.create_test_block(success_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Additional test, of checking that comparison of two time types works properly
        time_txs = []
        for tx in [
                tx['tx'] for tx in bip112txs_vary_OP_CSV_v2
                if not tx['sdf'] and tx['stf']
        ]:
            tx.vin[0].nSequence = BASE_RELATIVE_LOCKTIME | SEQ_TYPE_FLAG
            signtx = sign_transaction(self.nodes[0], tx)
            time_txs.append(signtx)

        self.sync_blocks([self.create_test_block(time_txs)])
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
Esempio n. 49
0
    def test_2of2_multisig(self):
        """
    Tests that holding a name in a 2-of-2 multisig address works as expected.
    One key holder alone cannot sign, but both together can update the name.
    This verifies basic usage of P2SH multisig for names.
    """

        self.log.info("Testing name held by 2-of-2 multisig...")

        # Construct a 2-of-2 multisig address shared between two nodes.
        pubkeyA = self.getNewPubkey(0)
        pubkeyB = self.getNewPubkey(1)
        multisig = self.nodes[0].addmultisigaddress(2, [pubkeyA, pubkeyB])
        multisig_ = self.nodes[1].addmultisigaddress(2, [pubkeyA, pubkeyB])
        assert_equal(multisig["address"], multisig_["address"])
        p2sh = multisig['address']

        # Register a new name to that address.
        self.nodes[0].name_register("x/name", val("value"),
                                    {"destAddress": p2sh})
        self.nodes[0].generate(10)
        data = self.checkName(0, "x/name", val("value"))
        assert_equal(data['address'], p2sh)

        # Straight-forward name updating should fail (for both nodes).
        assert_raises_rpc_error(-6, None, self.nodes[0].name_update, "x/name",
                                val("new value"))
        assert_raises_rpc_error(-6, None, self.nodes[1].name_update, "x/name",
                                val("new value"))

        # Find some other input to add as fee.
        unspents = self.nodes[0].listunspent()
        assert len(unspents) > 0
        feeInput = unspents[0]
        changeAddr = self.nodes[0].getnewaddress()
        nameAmount = Decimal("0.01")
        changeAmount = feeInput['amount'] - nameAmount

        # Construct the name update as raw transaction.
        addr = self.nodes[1].getnewaddress()
        inputs = [{"txid": data['txid'], "vout": data['vout']}, feeInput]
        outputs = {changeAddr: changeAmount, addr: nameAmount}
        txRaw = self.nodes[0].createrawtransaction(inputs, outputs)
        op = {"op": "name_update", "name": "x/name", "value": val("it worked")}
        nameInd = self.rawtxOutputIndex(0, txRaw, addr)
        txRaw = self.nodes[0].namerawtransaction(txRaw, nameInd, op)

        # Sign it partially.
        partial = self.nodes[0].signrawtransactionwithwallet(txRaw['hex'])
        assert not partial['complete']
        assert_raises_rpc_error(-26, None, self.nodes[0].sendrawtransaction,
                                partial['hex'])

        # Sign it fully.
        signed = self.nodes[1].signrawtransactionwithwallet(partial['hex'])
        assert signed['complete']
        tx = signed['hex']

        # Manipulate the signature to invalidate it.  This checks whether or
        # not the OP_MULTISIG is actually verified (vs just the script hash
        # compared to the redeem script).
        txData = bytearray(hex_str_to_bytes(tx))
        txData[44] = (txData[44] + 10) % 256
        txManipulated = txData.hex()

        # Send the tx.  The manipulation should be caught (independently of
        # when strict P2SH checks are enabled, since they are enforced
        # mandatorily in the mempool).
        assert_raises_rpc_error(-26, None, self.nodes[0].sendrawtransaction,
                                txManipulated)
        self.nodes[0].sendrawtransaction(tx)
        self.nodes[0].generate(1)
        self.sync_blocks()

        # Check that it was transferred correctly.
        self.checkName(1, "x/name", val("it worked"))
        self.nodes[1].name_update("x/name", val("changed"))
        self.nodes[1].generate(1)
        self.checkName(1, "x/name", val("changed"))
Esempio n. 50
0
    def run_test(self):
        self.url = urllib.parse.urlparse(self.nodes[0].url)
        self.log.info("Mine blocks and send Bitcoin to node 1")

        # Random address so node1's balance doesn't increase
        not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ"

        self.nodes[0].generate(1)
        self.sync_all()
        self.nodes[1].generatetoaddress(100, not_related_address)
        self.sync_all()

        assert_equal(self.nodes[0].getbalance(), 50)

        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        self.sync_all()

        self.log.info("Test the /tx URI")

        json_obj = self.test_rest_request("/tx/{}".format(txid))
        assert_equal(json_obj['txid'], txid)

        # Check hex format response
        hex_response = self.test_rest_request("/tx/{}".format(txid), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than_or_equal(int(hex_response.getheader('content-length')),
                                     json_obj['size']*2)

        spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout'])  # get the vin to later check for utxo (should be spent by then)
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        self.log.info("Query an unspent TXO using the /getutxos URI")

        self.nodes[1].generatetoaddress(1, not_related_address)
        self.sync_all()
        bb_hash = self.nodes[0].getbestblockhash()

        assert_equal(self.nodes[1].getbalance(), Decimal("0.1"))

        # Check chainTip response
        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is one utxo
        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1'))

        self.log.info("Query a spent TXO using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))

        # Check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # Make sure there is no utxo in the response because this outpoint has been spent
        assert_equal(len(json_obj['utxos']), 0)

        # Check bitmap
        assert_equal(json_obj['bitmap'], "0")

        self.log.info("Query two TXOs using the /getutxos URI")

        json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent)))

        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['bitmap'], "10")

        self.log.info("Query the TXOs using the /getutxos URI with a binary response")

        bin_request = b'\x01\x02'
        for txid, n in [spending, spent]:
            bin_request += hex_str_to_bytes(txid)
            bin_request += pack("i", n)

        bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES)
        output = BytesIO(bin_response)
        chain_height, = unpack("i", output.read(4))
        response_hash = output.read(32)[::-1].hex()

        assert_equal(bb_hash, response_hash)  # check if getutxo's chaintip during calculation was fine
        assert_equal(chain_height, 102)  # chain height must be 102

        self.log.info("Test the /getutxos URI with and without /checkmempool")
        # Create a transaction, check that it's found with /checkmempool, but
        # not found without. Then confirm the transaction and check that it's
        # found with or without /checkmempool.

        # do a tx and don't sync
        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        json_obj = self.test_rest_request("/tx/{}".format(txid))
        # get the spent output to later check for utxo (should be spent by then)
        spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout'])
        # get n of 0.1 outpoint
        n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1'))
        spending = (txid, n)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 0)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent))
        assert_equal(len(json_obj['utxos']), 0)

        self.nodes[0].generate(1)
        self.sync_all()

        json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending))
        assert_equal(len(json_obj['utxos']), 1)

        # Do some invalid requests
        self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ)
        self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ)

        # Test limits
        long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ)

        long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)])
        self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200)

        self.nodes[0].generate(1)  # generate block to not affect upcoming tests
        self.sync_all()

        self.log.info("Test the /block and /headers URIs")
        bb_hash = self.nodes[0].getbestblockhash()

        # Check binary format
        response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ)
        assert_greater_than(int(response.getheader('content-length')), BLOCK_HEADER_SIZE)
        response_bytes = response.read()

        # Compare with block header
        response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ)
        assert_equal(int(response_header.getheader('content-length')), BLOCK_HEADER_SIZE)
        response_header_bytes = response_header.read()
        assert_equal(response_bytes[:BLOCK_HEADER_SIZE], response_header_bytes)

        # Check block hex format
        response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than(int(response_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2)
        response_hex_bytes = response_hex.read().strip(b'\n')
        assert_equal(binascii.hexlify(response_bytes), response_hex_bytes)

        # Compare with hex block header
        response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ)
        assert_greater_than(int(response_header_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2)
        response_header_hex_bytes = response_header_hex.read(BLOCK_HEADER_SIZE*2)
        assert_equal(binascii.hexlify(response_bytes[:BLOCK_HEADER_SIZE]), response_header_hex_bytes)

        # Check json format
        block_json_obj = self.test_rest_request("/block/{}".format(bb_hash))
        assert_equal(block_json_obj['hash'], bb_hash)
Esempio n. 51
0
    def run_test(self):
        node = self.nodes[0]

        self.log.info('Start with empty mempool, and 200 blocks')
        self.mempool_size = 0
        assert_equal(node.getblockcount(), 200)
        assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
        coins = node.listunspent()

        self.log.info('Should not accept garbage to testmempoolaccept')
        assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar'))
        assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
        assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar']))

        self.log.info('A transaction already in the blockchain')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': coin['txid'], 'vout': coin['vout']}],
            outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}],
        ))['hex']
        txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        self.check_mempool_result(
            result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}],
            rawtxs=[raw_tx_in_block],
        )

        self.log.info('A transaction not in the mempool')
        fee = 0.00000700
        raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}],  # RBF is used later
            outputs=[{node.getnewaddress(): 0.3 - fee}],
        ))['hex']
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': True}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A final transaction not in the mempool')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}],  # SEQUENCE_FINAL
            outputs=[{node.getnewaddress(): 0.025}],
            locktime=node.getblockcount() + 2000,  # Can be anything
        ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': True}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
        node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
        self.mempool_size += 1

        self.log.info('A transaction in the mempool')
        node.sendrawtransaction(hexstring=raw_tx_0)
        self.mempool_size += 1
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that replaces a mempool transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(fee * COIN)  # Double the fee
        tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1  # Now, opt out of RBF
        raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': True}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that conflicts with an unconfirmed tx')
        # Send the transaction that replaces the mempool transaction and opts out of replaceability
        node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
        # take original raw_tx_0
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(4 * fee * COIN)  # Set more fee
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with missing inputs, that never existed')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with missing inputs, that existed once in the past')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[0].prevout.n = 1  # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
        raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex']
        txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0)
        # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
        raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[
                {'txid': txid_0, 'vout': 0},
                {'txid': txid_1, 'vout': 0},
            ],
            outputs=[{node.getnewaddress(): 0.1}]
        ))['hex']
        txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        # Now see if we can add the coins back to the utxo set by sending the exact txs again
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}],
            rawtxs=[raw_tx_0],
        )
        self.check_mempool_result(
            result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}],
            rawtxs=[raw_tx_1],
        )

        self.log.info('Create a signed "reference" tx for later use')
        raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': txid_spend_both, 'vout': 0}],
            outputs=[{node.getnewaddress(): 0.05}],
        ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        # Reference tx should be valid on itself
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': True}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with no outputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = []
        # Skip re-signing the transaction for context independent checks from now on
        # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex'])))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A really large transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize()))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with negative output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue *= -1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue = 21000000 * COIN + 1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large sum of output values')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = [tx.vout[0]] * 2
        tx.vout[0].nValue = 21000000 * COIN
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with duplicate inputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * 2
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A coinbase transaction')
        # Pick the input of the first tx we signed, so it has to be a coinbase tx
        raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid'])
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('Some nonstandard transactions')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.nVersion = 3  # A version currently non-standard
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_0])  # Some non-standard script
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript([OP_HASH160])  # Some not-pushonly scriptSig
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL]))
        num_scripts = 100000 // len(output_p2sh_burn.serialize())  # Use enough outputs to make the tx too large for our policy
        tx.vout = [output_p2sh_burn] * num_scripts
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0] = output_p2sh_burn
        tx.vout[0].nValue -= 1  # Make output smaller, such that it is dust for our policy
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
        tx.vout = [tx.vout[0]] * 2
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A timelocked transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].nSequence -= 1  # Should be non-max, so locktime is not ignored
        tx.nLockTime = node.getblockcount() + 1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction that is locked by BIP68 sequence logic')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].nSequence = 2  # We could include it in the second block mined from now, but not the very next one
        # Can skip re-signing the tx because of early rejection
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
    def run_test(self):
        self.log.info("Mining blocks...")
        self.nodes[0].generate(1)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(
            self.nodes[1].getbestblockhash())['mediantime']

        node0_address1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())

        #Check only one address
        assert_equal(node0_address1['ismine'], True)

        #Node 1 sync test
        assert_equal(self.nodes[1].getblockcount(), 1)

        #Address Test - before import
        address_info = self.nodes[1].getaddressinfo(node0_address1['address'])
        assert_equal(address_info['iswatchonly'], False)
        assert_equal(address_info['ismine'], False)

        # RPC importmulti -----------------------------------------------

        # MyOriginalCoin Address
        self.log.info("Should import an address")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)
        watchonly_address = address['address']
        watchonly_timestamp = timestamp

        self.log.info("Should not import an invalid address")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": "not valid address",
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Invalid address')

        # ScriptPubKey + internal
        self.log.info("Should import a scriptPubKey with internal flag")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey":
            address['scriptPubKey'],
            "timestamp":
            "now",
            "internal":
            True
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)

        # ScriptPubKey + internal + label
        self.log.info(
            "Should not allow a label to be specified when internal is true")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey":
            address['scriptPubKey'],
            "timestamp":
            "now",
            "internal":
            True,
            "label":
            "Example label"
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'],
                     'Internal addresses should not have a label')

        # Nonstandard scriptPubKey + !internal
        self.log.info(
            "Should not import a nonstandard scriptPubKey without internal flag"
        )
        nonstandardScriptPubKey = address['scriptPubKey'] + bytes_to_hex_str(
            script.CScript([script.OP_NOP]))
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": nonstandardScriptPubKey,
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(
            result[0]['error']['message'],
            'Internal must be set to true for nonstandard scriptPubKey imports.'
        )
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # Address + Public key + !Internal
        self.log.info("Should import an address with public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [address['pubkey']]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)

        # ScriptPubKey + Public key + internal
        self.log.info(
            "Should import a scriptPubKey with internal and with public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "pubkeys": [address['pubkey']],
            "internal": True
        }]
        result = self.nodes[1].importmulti(request)
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)

        # Nonstandard scriptPubKey + Public key + !internal
        self.log.info(
            "Should not import a nonstandard scriptPubKey without internal and with public key"
        )
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": nonstandardScriptPubKey,
            "timestamp": "now",
            "pubkeys": [address['pubkey']]
        }]
        result = self.nodes[1].importmulti(request)
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(
            result[0]['error']['message'],
            'Internal must be set to true for nonstandard scriptPubKey imports.'
        )
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # Address + Private key + !watchonly
        self.log.info("Should import an address with private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['timestamp'], timestamp)

        self.log.info(
            "Should not import an address with private key if is already imported"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -4)
        assert_equal(
            result[0]['error']['message'],
            'The wallet already contains the private key for this address or script'
        )

        # Address + Private key + watchonly
        self.log.info(
            "Should not import an address with private key and with watchonly")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])],
            "watchonly":
            True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'],
                     'Watch-only addresses should not include private keys')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # ScriptPubKey + Private key + internal
        self.log.info(
            "Should import a scriptPubKey with internal and with private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey":
            address['scriptPubKey'],
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])],
            "internal":
            True
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['timestamp'], timestamp)

        # Nonstandard scriptPubKey + Private key + !internal
        self.log.info(
            "Should not import a nonstandard scriptPubKey without internal and with private key"
        )
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey":
            nonstandardScriptPubKey,
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(
            result[0]['error']['message'],
            'Internal must be set to true for nonstandard scriptPubKey imports.'
        )
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # P2SH address
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(
            2, [
                sig_address_1['pubkey'], sig_address_2['pubkey'],
                sig_address_3['pubkey']
            ])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(
            self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['isscript'], True)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['timestamp'], timestamp)
        p2shunspent = self.nodes[1].listunspent(
            0, 999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], False)

        # P2SH + Redeem script
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(
            2, [
                sig_address_1['pubkey'], sig_address_2['pubkey'],
                sig_address_3['pubkey']
            ])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(
            self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            multi_sig_script['redeemScript']
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['timestamp'], timestamp)

        p2shunspent = self.nodes[1].listunspent(
            0, 999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)

        # P2SH + Redeem script + Private Keys + !Watchonly
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(
            2, [
                sig_address_1['pubkey'], sig_address_2['pubkey'],
                sig_address_3['pubkey']
            ])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(
            self.nodes[1].getbestblockhash())['mediantime']

        self.log.info(
            "Should import a p2sh with respective redeem script and private keys"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            multi_sig_script['redeemScript'],
            "keys": [
                self.nodes[0].dumpprivkey(sig_address_1['address']),
                self.nodes[0].dumpprivkey(sig_address_2['address'])
            ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['timestamp'], timestamp)

        p2shunspent = self.nodes[1].listunspent(
            0, 999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)

        # P2SH + Redeem script + Private Keys + Watchonly
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(
            2, [
                sig_address_1['pubkey'], sig_address_2['pubkey'],
                sig_address_3['pubkey']
            ])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(
            self.nodes[1].getbestblockhash())['mediantime']

        self.log.info(
            "Should import a p2sh with respective redeem script and private keys"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            multi_sig_script['redeemScript'],
            "keys": [
                self.nodes[0].dumpprivkey(sig_address_1['address']),
                self.nodes[0].dumpprivkey(sig_address_2['address'])
            ],
            "watchonly":
            True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'],
                     'Watch-only addresses should not include private keys')

        # Address + Public key + !Internal + Wrong pubkey
        self.log.info("Should not import an address with a wrong public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [address2['pubkey']]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'],
                     'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # ScriptPubKey + Public key + internal + Wrong pubkey
        self.log.info(
            "Should not import a scriptPubKey with internal and with a wrong public key"
        )
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "pubkeys": [address2['pubkey']],
            "internal": True
        }]
        result = self.nodes[1].importmulti(request)
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'],
                     'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # Address + Private key + !watchonly + Wrong private key
        self.log.info("Should not import an address with a wrong private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address2['address'])]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'],
                     'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # ScriptPubKey + Private key + internal + Wrong private key
        self.log.info(
            "Should not import a scriptPubKey with internal and with a wrong private key"
        )
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey":
            address['scriptPubKey'],
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address2['address'])],
            "internal":
            True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'],
                     'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # Importing existing watch only address with new timestamp should replace saved timestamp.
        assert_greater_than(timestamp, watchonly_timestamp)
        self.log.info("Should replace previously saved watch only timestamp.")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": watchonly_address,
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(watchonly_address)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)
        watchonly_timestamp = timestamp

        # restart nodes to check for proper serialization/deserialization of watch only address
        self.stop_nodes()
        self.start_nodes()
        address_assert = self.nodes[1].getaddressinfo(watchonly_address)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], watchonly_timestamp)

        # Bad or missing timestamps
        self.log.info("Should throw on invalid or missing timestamp values")
        assert_raises_rpc_error(-3, 'Missing required timestamp field for key',
                                self.nodes[1].importmulti,
                                [{
                                    "scriptPubKey": address['scriptPubKey'],
                                }])
        assert_raises_rpc_error(
            -3,
            'Expected number or "now" timestamp value for key. got type string',
            self.nodes[1].importmulti, [{
                "scriptPubKey": address['scriptPubKey'],
                "timestamp": "",
            }])

        # Import P2WPKH address as watch only
        self.log.info("Should import a P2WPKH address as watch only")
        address = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['solvable'], False)

        # Import P2WPKH address with public key but no private key
        self.log.info(
            "Should import a P2WPKH address and public key as solvable but not spendable"
        )
        address = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [address['pubkey']]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['solvable'], True)

        # Import P2WPKH address with key and check it is spendable
        self.log.info("Should import a P2WPKH address with key")
        address = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp":
            "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)

        # P2WSH multisig address without scripts or keys
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].addmultisigaddress(
            2, [sig_address_1['pubkey'], sig_address_2['pubkey']], "",
            "bech32")
        self.log.info(
            "Should import a p2wsh multisig as watch only without respective redeem script and private keys"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now"
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['solvable'], False)

        # Same P2WSH multisig address as above, but now with witnessscript + private keys
        self.log.info(
            "Should import a p2wsh with respective redeem script and private keys"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp":
            "now",
            "witnessscript":
            multi_sig_script['redeemScript'],
            "keys": [
                self.nodes[0].dumpprivkey(sig_address_1['address']),
                self.nodes[0].dumpprivkey(sig_address_2['address'])
            ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['sigsrequired'], 2)

        # P2SH-P2WPKH address with no redeemscript or public or private key
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress(address_type="p2sh-segwit"))
        pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey']))
        pkscript = CScript([OP_0, pubkeyhash])
        self.log.info(
            "Should import a p2sh-p2wpkh without redeem script or keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp": "now"
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], False)
        assert_equal(address_assert['ismine'], False)

        # P2SH-P2WPKH address + redeemscript + public key with no private key
        self.log.info(
            "Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            bytes_to_hex_str(pkscript),
            "pubkeys": [sig_address_1['pubkey']]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], False)

        # P2SH-P2WPKH address + redeemscript + private key
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress(address_type="p2sh-segwit"))
        pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey']))
        pkscript = CScript([OP_0, pubkeyhash])
        self.log.info(
            "Should import a p2sh-p2wpkh with respective redeem script and private keys"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            bytes_to_hex_str(pkscript),
            "keys": [self.nodes[0].dumpprivkey(sig_address_1['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], True)

        # P2SH-P2WSH 1-of-1 multisig + redeemscript with no private key
        sig_address_1 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].addmultisigaddress(
            1, [sig_address_1['pubkey']], "", "p2sh-segwit")
        scripthash = sha256(hex_str_to_bytes(multi_sig_script['redeemScript']))
        redeem_script = CScript([OP_0, scripthash])
        self.log.info(
            "Should import a p2sh-p2wsh with respective redeem script but no private key"
        )
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp":
            "now",
            "redeemscript":
            bytes_to_hex_str(redeem_script),
            "witnessscript":
            multi_sig_script['redeemScript']
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(
            multi_sig_script['address'])
        assert_equal(address_assert['solvable'], True)
Esempio n. 53
0
    def run_test (self):
        self.log.info("Mining blocks...")
        self.nodes[0].generate(1)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())

        #Check only one address
        assert_equal(node0_address1['ismine'], True)

        #Node 1 sync test
        assert_equal(self.nodes[1].getblockcount(),1)

        #Address Test - before import
        address_info = self.nodes[1].getaddressinfo(node0_address1['address'])
        assert_equal(address_info['iswatchonly'], False)
        assert_equal(address_info['ismine'], False)


        # RPC importmulti -----------------------------------------------

        # Bitcoin Address (implicit non-internal)
        self.log.info("Should import an address")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)
        assert_equal(address_assert['ischange'], False)
        watchonly_address = address['address']
        watchonly_timestamp = timestamp

        self.log.info("Should not import an invalid address")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": "not valid address",
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Invalid address')

        # ScriptPubKey + internal
        self.log.info("Should import a scriptPubKey with internal flag")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "internal": True
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)
        assert_equal(address_assert['ischange'], True)

        # ScriptPubKey + internal + label
        self.log.info("Should not allow a label to be specified when internal is true")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "internal": True,
            "label": "Example label"
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Internal addresses should not have a label')

        # Nonstandard scriptPubKey + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal flag")
        nonstandardScriptPubKey = address['scriptPubKey'] + bytes_to_hex_str(script.CScript([script.OP_NOP]))
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": nonstandardScriptPubKey,
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # Address + Public key + !Internal(explicit)
        self.log.info("Should import an address with public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [ address['pubkey'] ],
            "internal": False
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)


        # ScriptPubKey + Public key + internal
        self.log.info("Should import a scriptPubKey with internal and with public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "pubkeys": [ address['pubkey'] ],
            "internal": True
        }]
        result = self.nodes[1].importmulti(requests=request)
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)

        # Nonstandard scriptPubKey + Public key + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal and with public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": nonstandardScriptPubKey,
            "timestamp": "now",
            "pubkeys": [ address['pubkey'] ]
        }]
        result = self.nodes[1].importmulti(requests=request)
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # Address + Private key + !watchonly
        self.log.info("Should import an address with private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address['address']) ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['timestamp'], timestamp)

        self.log.info("Should not import an address with private key if is already imported")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address['address']) ]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -4)
        assert_equal(result[0]['error']['message'], 'The wallet already contains the private key for this address or script')

        # Address + Private key + watchonly
        self.log.info("Should not import an address with private key and with watchonly")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address['address']) ],
            "watchonly": True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Watch-only addresses should not include private keys')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)

        # ScriptPubKey + Private key + internal
        self.log.info("Should import a scriptPubKey with internal and with private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address['address']) ],
            "internal": True
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['timestamp'], timestamp)

        # Nonstandard scriptPubKey + Private key + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal and with private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": nonstandardScriptPubKey,
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address['address']) ]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # P2SH address
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['isscript'], True)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['timestamp'], timestamp)
        p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], False)


        # P2SH + Redeem script
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
            "redeemscript": multi_sig_script['redeemScript']
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['timestamp'], timestamp)

        p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)


        # P2SH + Redeem script + Private Keys + !Watchonly
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script and private keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
            "redeemscript": multi_sig_script['redeemScript'],
            "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['timestamp'], timestamp)

        p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)

        # P2SH + Redeem script + Private Keys + Watchonly
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script and private keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
            "redeemscript": multi_sig_script['redeemScript'],
            "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])],
            "watchonly": True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], 'Watch-only addresses should not include private keys')


        # Address + Public key + !Internal + Wrong pubkey
        self.log.info("Should not import an address with a wrong public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [ address2['pubkey'] ]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # ScriptPubKey + Public key + internal + Wrong pubkey
        self.log.info("Should not import a scriptPubKey with internal and with a wrong public key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        request = [{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "pubkeys": [ address2['pubkey'] ],
            "internal": True
        }]
        result = self.nodes[1].importmulti(request)
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # Address + Private key + !watchonly + Wrong private key
        self.log.info("Should not import an address with a wrong private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address2['address']) ]
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # ScriptPubKey + Private key + internal + Wrong private key
        self.log.info("Should not import a scriptPubKey with internal and with a wrong private key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        result = self.nodes[1].importmulti([{
            "scriptPubKey": address['scriptPubKey'],
            "timestamp": "now",
            "keys": [ self.nodes[0].dumpprivkey(address2['address']) ],
            "internal": True
        }])
        assert_equal(result[0]['success'], False)
        assert_equal(result[0]['error']['code'], -5)
        assert_equal(result[0]['error']['message'], 'Key does not match address destination')
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], False)
        assert_equal('timestamp' in address_assert, False)


        # Importing existing watch only address with new timestamp should replace saved timestamp.
        assert_greater_than(timestamp, watchonly_timestamp)
        self.log.info("Should replace previously saved watch only timestamp.")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": watchonly_address,
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(watchonly_address)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], timestamp)
        watchonly_timestamp = timestamp


        # restart nodes to check for proper serialization/deserialization of watch only address
        self.stop_nodes()
        self.start_nodes()
        address_assert = self.nodes[1].getaddressinfo(watchonly_address)
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['timestamp'], watchonly_timestamp)

        # Bad or missing timestamps
        self.log.info("Should throw on invalid or missing timestamp values")
        assert_raises_rpc_error(-3, 'Missing required timestamp field for key',
            self.nodes[1].importmulti, [{
                "scriptPubKey": address['scriptPubKey'],
            }])
        assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string',
            self.nodes[1].importmulti, [{
                "scriptPubKey": address['scriptPubKey'],
                "timestamp": "",
            }])

        # Import P2WPKH address as watch only
        self.log.info("Should import a P2WPKH address as watch only")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], True)
        assert_equal(address_assert['solvable'], False)

        # Import P2WPKH address with public key but no private key
        self.log.info("Should import a P2WPKH address and public key as solvable but not spendable")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "pubkeys": [ address['pubkey'] ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['ismine'], False)
        assert_equal(address_assert['solvable'], True)

        # Import P2WPKH address with key and check it is spendable
        self.log.info("Should import a P2WPKH address with key")
        address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32"))
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": address['address']
            },
            "timestamp": "now",
            "keys": [self.nodes[0].dumpprivkey(address['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(address['address'])
        assert_equal(address_assert['iswatchonly'], False)
        assert_equal(address_assert['ismine'], True)

        # P2WSH multisig address without scripts or keys
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].addmultisigaddress(2, [sig_address_1['pubkey'], sig_address_2['pubkey']], "", "bech32")
        self.log.info("Should import a p2wsh multisig as watch only without respective redeem script and private keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now"
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['solvable'], False)

        # Same P2WSH multisig address as above, but now with witnessscript + private keys
        self.log.info("Should import a p2wsh with respective redeem script and private keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
            "witnessscript": multi_sig_script['redeemScript'],
            "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address']) ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], True)
        assert_equal(address_assert['sigsrequired'], 2)

        # P2SH-P2WPKH address with no redeemscript or public or private key
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="p2sh-segwit"))
        pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey']))
        pkscript = CScript([OP_0, pubkeyhash])
        self.log.info("Should import a p2sh-p2wpkh without redeem script or keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp": "now"
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], False)
        assert_equal(address_assert['ismine'], False)

        # P2SH-P2WPKH address + redeemscript + public key with no private key
        self.log.info("Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp": "now",
            "redeemscript": bytes_to_hex_str(pkscript),
            "pubkeys": [ sig_address_1['pubkey'] ]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], False)

        # P2SH-P2WPKH address + redeemscript + private key
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="p2sh-segwit"))
        pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey']))
        pkscript = CScript([OP_0, pubkeyhash])
        self.log.info("Should import a p2sh-p2wpkh with respective redeem script and private keys")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": sig_address_1['address']
            },
            "timestamp": "now",
            "redeemscript": bytes_to_hex_str(pkscript),
            "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address'])]
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(sig_address_1['address'])
        assert_equal(address_assert['solvable'], True)
        assert_equal(address_assert['ismine'], True)

        # P2SH-P2WSH 1-of-1 multisig + redeemscript with no private key
        sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())
        multi_sig_script = self.nodes[0].addmultisigaddress(1, [sig_address_1['pubkey']], "", "p2sh-segwit")
        scripthash = sha256(hex_str_to_bytes(multi_sig_script['redeemScript']))
        redeem_script = CScript([OP_0, scripthash])
        self.log.info("Should import a p2sh-p2wsh with respective redeem script but no private key")
        result = self.nodes[1].importmulti([{
            "scriptPubKey": {
                "address": multi_sig_script['address']
            },
            "timestamp": "now",
            "redeemscript": bytes_to_hex_str(redeem_script),
            "witnessscript": multi_sig_script['redeemScript']
        }])
        assert_equal(result[0]['success'], True)
        address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address'])
        assert_equal(address_assert['solvable'], True)
Esempio n. 54
0
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': True}],
            rawtxs=[raw_tx_0],
        )

<<<<<<< HEAD
=======
        self.log.info('A final transaction not in the mempool')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}],  # SEQUENCE_FINAL
            outputs=[{node.getnewaddress(): 0.025}],
            locktime=node.getblockcount() + 2000,  # Can be anything
        ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': True}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
        node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
        self.mempool_size += 1

>>>>>>> 3001cc61cf11e016c403ce83c9cbcfd3efcbcfd9
        self.log.info('A transaction in the mempool')
        node.sendrawtransaction(hexstring=raw_tx_0)
        self.mempool_size = 1
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}],
            rawtxs=[raw_tx_0],
    def run_test(self):

        print("Testing wallet secret recovery")
        self.test_wallet_recovery()

        print("General Confidential tests")
        # Running balances
        node0 = self.nodes[0].getbalance()["bitcoin"]
        assert_equal(node0, 21000000) # just making sure initialfreecoins is working
        node1 = 0
        node2 = 0

        self.nodes[0].generate(101)
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), node0, "", "", True)
        self.nodes[0].generate(101)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, "bitcoin"), node1)
        assert_equal(self.nodes[2].getbalance("*", 1, False, "bitcoin"), node2)

        # Send 3 BTC from 0 to a new unconfidential address of 2 with
        # the sendtoaddress call
        address = self.nodes[2].getnewaddress()
        unconfidential_address = self.nodes[2].validateaddress(address)["unconfidential"]
        value0 = 3
        self.nodes[0].sendtoaddress(unconfidential_address, value0)
        self.nodes[0].generate(101)
        self.sync_all()

        node0 = node0 - value0
        node2 = node2 + value0

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, "bitcoin"), node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Send 5 BTC from 0 to a new address of 2 with the sendtoaddress call
        address2 = self.nodes[2].getnewaddress()
        unconfidential_address2 = self.nodes[2].validateaddress(address2)["unconfidential"]
        value1 = 5
        confidential_tx_id = self.nodes[0].sendtoaddress(address2, value1)
        self.nodes[0].generate(101)
        self.sync_all()

        node0 = node0 - value1
        node2 = node2 + value1

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, "bitcoin"), node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Send 7 BTC from 0 to the unconfidential address of 2 and 11 BTC to the
        # confidential address using the raw transaction interface
        change_address = self.nodes[0].getnewaddress()
        value2 = 7
        value3 = 11
        value23 = value2 + value3
        unspent = self.nodes[0].listunspent(1, 9999999, [], True, {"asset": "bitcoin"})
        unspent = [i for i in unspent if i['amount'] > value23]
        assert_equal(len(unspent), 1)
        fee = Decimal('0.0001')
        tx = self.nodes[0].createrawtransaction([{"txid": unspent[0]["txid"],
                                                  "vout": unspent[0]["vout"],
                                                  "nValue": unspent[0]["amount"]}],
                                                {unconfidential_address: value2, address2: value3,
                                                change_address: unspent[0]["amount"] - value2 - value3 - fee, "fee":fee})
        tx = self.nodes[0].blindrawtransaction(tx)
        tx_signed = self.nodes[0].signrawtransactionwithwallet(tx)
        raw_tx_id = self.nodes[0].sendrawtransaction(tx_signed['hex'])
        self.nodes[0].generate(101)
        self.sync_all()

        node0 -= (value2 + value3)
        node2 += value2 + value3

        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, "bitcoin"), node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Check 2's listreceivedbyaddress
        received_by_address = self.nodes[2].listreceivedbyaddress(0, False, False, "", "bitcoin")
        validate_by_address = [(address2, {"bitcoin": value1 + value3}), (address, {"bitcoin": value0 + value2})]
        assert_equal(sorted([(ele['address'], ele['amount']) for ele in received_by_address], key=lambda t: t[0]),
                sorted(validate_by_address, key = lambda t: t[0]))

        # Give an auditor (node 1) a blinding key to allow her to look at
        # transaction values
        self.nodes[1].importaddress(address2)
        received_by_address = self.nodes[1].listreceivedbyaddress(1, False, True)
        #Node sees nothing unless it understands the values
        assert_equal(len(received_by_address), 0)
        assert_equal(len(self.nodes[1].listunspent(1, 9999999, [], True, {"asset": "bitcoin"})), 0)

        # Import the blinding key
        blindingkey = self.nodes[2].dumpblindingkey(address2)
        self.nodes[1].importblindingkey(address2, blindingkey)
        # Check the auditor's gettransaction and listreceivedbyaddress
        # Needs rescan to update wallet txns
        conf_tx = self.nodes[1].gettransaction(confidential_tx_id, True)
        assert_equal(conf_tx['amount']["bitcoin"], value1)

        # Make sure wallet can now deblind part of transaction
        deblinded_tx = self.nodes[1].unblindrawtransaction(conf_tx['hex'])['hex']
        for output in self.nodes[1].decoderawtransaction(deblinded_tx)["vout"]:
            if "value" in output and output["scriptPubKey"]["type"] != "fee":
                assert_equal(output["scriptPubKey"]["addresses"][0], self.nodes[1].validateaddress(address2)['unconfidential'])
                found_unblinded = True
        assert(found_unblinded)

        assert_equal(self.nodes[1].gettransaction(raw_tx_id, True)['amount']["bitcoin"], value3)
        list_unspent = self.nodes[1].listunspent(1, 9999999, [], True, {"asset": "bitcoin"})
        assert_equal(list_unspent[0]['amount']+list_unspent[1]['amount'], value1+value3)
        received_by_address = self.nodes[1].listreceivedbyaddress(1, False, True)
        assert_equal(len(received_by_address), 1)
        assert_equal((received_by_address[0]['address'], received_by_address[0]['amount']['bitcoin']),
                     (unconfidential_address2, value1 + value3))

        # Spending a single confidential output and sending it to a
        # unconfidential output is not possible with CT. Test the
        # correct behavior of blindrawtransaction.
        unspent = self.nodes[0].listunspent(1, 9999999, [], True, {"asset": "bitcoin"})
        unspent = [i for i in unspent if i['amount'] > value23]
        assert_equal(len(unspent), 1)
        tx = self.nodes[0].createrawtransaction([{"txid": unspent[0]["txid"],
                                                  "vout": unspent[0]["vout"],
                                                  "nValue": unspent[0]["amount"]}],
                                                  {unconfidential_address: unspent[0]["amount"] - fee, "fee":fee})

        # Test that blindrawtransaction adds an OP_RETURN output to balance blinders
        temptx = self.nodes[0].blindrawtransaction(tx)
        decodedtx = self.nodes[0].decoderawtransaction(temptx)
        assert_equal(decodedtx["vout"][-1]["scriptPubKey"]["asm"], "OP_RETURN")
        assert_equal(len(decodedtx["vout"]), 3)

        # Create same transaction but with a change/dummy output.
        # It should pass the blinding step.
        value4 = 17
        change_address = self.nodes[0].getrawchangeaddress()
        tx = self.nodes[0].createrawtransaction([{"txid": unspent[0]["txid"],
                                                  "vout": unspent[0]["vout"],
                                                  "nValue": unspent[0]["amount"]}],
                                                  {unconfidential_address: value4,
                                                   change_address: unspent[0]["amount"] - value4 - fee, "fee":fee})
        tx = self.nodes[0].blindrawtransaction(tx)
        tx_signed = self.nodes[0].signrawtransactionwithwallet(tx)
        txid = self.nodes[0].sendrawtransaction(tx_signed['hex'])
        decodedtx = self.nodes[0].decoderawtransaction(tx_signed["hex"])
        self.nodes[0].generate(101)
        self.sync_all()

        unblindfound = False
        for i in range(len(decodedtx["vout"])):
            txout = self.nodes[0].gettxout(txid, i)
            if txout is not None and "asset" in txout:
                unblindfound = True

        if unblindfound == False:
            raise Exception("No unconfidential output detected when one should exist")

        node0 -= value4
        node2 += value4
        assert_equal(self.nodes[0].getbalance()["bitcoin"], node0)
        assert_equal(self.nodes[1].getbalance("*", 1, False, "bitcoin"), node1)
        assert_equal(self.nodes[2].getbalance()["bitcoin"], node2)

        # Testing wallet's ability to deblind its own outputs
        addr = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        # We add two to-blind outputs, fundraw adds an already-blinded change output
        # If we only add one, the newly blinded will be 0-blinded because input = -output
        raw = self.nodes[0].createrawtransaction([], {addr:Decimal('1.1'), addr2:1})
        funded = self.nodes[0].fundrawtransaction(raw)
        # fund again to make sure no blinded outputs were created (would fail)
        funded = self.nodes[0].fundrawtransaction(funded["hex"])
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        # blind again to make sure we know output blinders
        blinded2 = self.nodes[0].blindrawtransaction(blinded)
        # then sign and send
        signed = self.nodes[0].signrawtransactionwithwallet(blinded2)
        self.nodes[0].sendrawtransaction(signed["hex"])

        # Aside: Check all outputs after fundraw are properly marked for blinding
        fund_decode = self.nodes[0].decoderawtransaction(funded["hex"])
        for output in fund_decode["vout"][:-1]:
            assert "asset" in output
            assert "value" in output
            assert output["scriptPubKey"]["type"] != "fee"
            assert output["commitmentnonce_fully_valid"]
        assert fund_decode["vout"][-1]["scriptPubKey"]["type"] == "fee"
        assert not fund_decode["vout"][-1]["commitmentnonce_fully_valid"]

        # Also check that all fundraw outputs marked for blinding are blinded later
        for blind_tx in [blinded, blinded2]:
            blind_decode = self.nodes[0].decoderawtransaction(blind_tx)
            for output in blind_decode["vout"][:-1]:
                assert "asset" not in output
                assert "value" not in output
                assert output["scriptPubKey"]["type"] != "fee"
                assert output["commitmentnonce_fully_valid"]
            assert blind_decode["vout"][-1]["scriptPubKey"]["type"] == "fee"
            assert "asset" in blind_decode["vout"][-1]
            assert "value" in blind_decode["vout"][-1]
            assert not blind_decode["vout"][-1]["commitmentnonce_fully_valid"]

        # Check createblindedaddress functionality
        blinded_addr = self.nodes[0].getnewaddress()
        validated_addr = self.nodes[0].validateaddress(blinded_addr)
        blinding_pubkey = self.nodes[0].validateaddress(blinded_addr)["confidential_key"]
        blinding_key = self.nodes[0].dumpblindingkey(blinded_addr)
        assert_equal(blinded_addr, self.nodes[1].createblindedaddress(validated_addr["unconfidential"], blinding_pubkey))

        # If a blinding key is over-ridden by a newly imported one, funds may be unaccounted for
        new_addr = self.nodes[0].getnewaddress()
        new_validated = self.nodes[0].validateaddress(new_addr)
        self.nodes[2].sendtoaddress(new_addr, 1)
        self.sync_all()
        diff_blind = self.nodes[1].createblindedaddress(new_validated["unconfidential"], blinding_pubkey)
        assert_equal(len(self.nodes[0].listunspent(0, 0, [new_validated["unconfidential"]])), 1)
        self.nodes[0].importblindingkey(diff_blind, blinding_key)
        # CT values for this wallet transaction  have been cached via importblindingkey
        # therefore result will be same even though we change blinding keys
        assert_equal(len(self.nodes[0].listunspent(0, 0, [new_validated["unconfidential"]])), 1)

        # Confidential Assets Tests

        print("Assets tests...")

        # Bitcoin is the first issuance
        assert_equal(self.nodes[0].listissuances()[0]["assetlabel"], "bitcoin")
        assert_equal(len(self.nodes[0].listissuances()), 1)

        # Unblinded issuance of asset
        issued = self.nodes[0].issueasset(1, 1, False)
        self.nodes[0].reissueasset(issued["asset"], 1)

        # Compare resulting fields with getrawtransaction
        raw_details = self.nodes[0].getrawtransaction(issued["txid"], 1)
        assert_equal(issued["entropy"], raw_details["vin"][issued["vin"]]["issuance"]["assetEntropy"])
        assert_equal(issued["asset"], raw_details["vin"][issued["vin"]]["issuance"]["asset"])
        assert_equal(issued["token"], raw_details["vin"][issued["vin"]]["issuance"]["token"])

        self.nodes[0].generate(1)
        self.sync_all()

        issued2 = self.nodes[0].issueasset(2, 1)
        test_asset = issued2["asset"]
        assert_equal(self.nodes[0].getwalletinfo()['balance'][test_asset], Decimal(2))
        assert(test_asset not in self.nodes[1].getwalletinfo()['balance'])

        # Assets balance checking, note that accounts are completely ignored because
        # balance queries with accounts are horrifically broken upstream
        assert_equal(self.nodes[0].getbalance("*", 0, False, "bitcoin"), self.nodes[0].getbalance("*", 0, False, "bitcoin"))
        assert_equal(self.nodes[0].getwalletinfo()['balance']['bitcoin'], self.nodes[0].getbalance("*", 0, False, "bitcoin"))

        # Send some bitcoin and other assets over as well to fund wallet
        addr = self.nodes[2].getnewaddress()
        self.nodes[0].sendtoaddress(addr, 5)
        self.nodes[0].sendmany("", {addr: 1, self.nodes[2].getnewaddress(): 13}, 0, "", [], False, 1, "UNSET", {addr: test_asset})

        self.sync_all()

        # Should have exactly 1 in change(trusted, though not confirmed) after sending one off
        assert_equal(self.nodes[0].getbalance("*", 0, False, test_asset), 1)
        assert_equal(self.nodes[2].getunconfirmedbalance()[test_asset], Decimal(1))

        b_utxos = self.nodes[2].listunspent(0, 0, [], True, {"asset": "bitcoin"})
        t_utxos = self.nodes[2].listunspent(0, 0, [], True, {"asset": test_asset})

        assert_equal(len(self.nodes[2].listunspent(0, 0, [])), len(b_utxos)+len(t_utxos))

        # Now craft a blinded transaction via raw api
        rawaddrs = []
        for i in range(2):
            rawaddrs.append(self.nodes[1].getnewaddress())
        raw_assets = self.nodes[2].createrawtransaction([{"txid":b_utxos[0]['txid'], "vout":b_utxos[0]['vout'], "nValue":b_utxos[0]['amount']}, {"txid":b_utxos[1]['txid'], "vout":b_utxos[1]['vout'], "nValue":b_utxos[1]['amount'], "asset":b_utxos[1]['asset']}, {"txid":t_utxos[0]['txid'], "vout":t_utxos[0]['vout'], "nValue":t_utxos[0]['amount'], "asset":t_utxos[0]['asset']}], {rawaddrs[1]:Decimal(t_utxos[0]['amount']), rawaddrs[0]:Decimal(b_utxos[0]['amount']+b_utxos[1]['amount']-Decimal("0.01")), "fee":Decimal("0.01")}, 0, False, {rawaddrs[0]:b_utxos[0]['asset'], rawaddrs[1]:t_utxos[0]['asset'], "fee":b_utxos[0]['asset']})

        # Sign unblinded, then blinded
        signed_assets = self.nodes[2].signrawtransactionwithwallet(raw_assets)
        blind_assets = self.nodes[2].blindrawtransaction(raw_assets)
        signed_assets = self.nodes[2].signrawtransactionwithwallet(blind_assets)

        # And finally send
        self.nodes[2].sendrawtransaction(signed_assets['hex'])
        self.nodes[2].generate(101)
        self.sync_all()

        issuancedata = self.nodes[2].issueasset(0, Decimal('0.00000006')) #0 of asset, 6 reissuance token

        # Node 2 will send node 1 a reissuance token, both will generate assets
        self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), Decimal('0.00000001'), "", "", False, False, 1, "UNSET", issuancedata["token"])
        # node 1 needs to know about a (re)issuance to reissue itself
        self.nodes[1].importaddress(self.nodes[2].gettransaction(issuancedata["txid"])["details"][0]["address"])
        # also send some bitcoin
        self.nodes[2].generate(1)
        self.sync_all()

        self.nodes[1].reissueasset(issuancedata["asset"], Decimal('0.05'))
        self.nodes[2].reissueasset(issuancedata["asset"], Decimal('0.025'))
        self.nodes[1].generate(1)
        self.sync_all()

        # Check for value accounting when asset issuance is null but token not, ie unblinded
        # HACK: Self-send to sweep up bitcoin inputs into blinded output.
        # We were hitting https://github.com/ElementsProject/elements/issues/473 for the following issuance
        self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[0].getwalletinfo()["balance"]["bitcoin"], "", "", True)
        issued = self.nodes[0].issueasset(0, 1, False)
        walletinfo = self.nodes[0].getwalletinfo()
        assert(issued["asset"] not in walletinfo["balance"])
        assert_equal(walletinfo["balance"][issued["token"]], Decimal(1))
        assert(issued["asset"] not in walletinfo["unconfirmed_balance"])
        assert(issued["token"] not in walletinfo["unconfirmed_balance"])

        # Check for value when receiving different assets by same address.
        self.nodes[0].sendtoaddress(unconfidential_address2, Decimal('0.00000001'), "", "", False, False, 1, "UNSET", test_asset)
        self.nodes[0].sendtoaddress(unconfidential_address2, Decimal('0.00000002'), "", "", False, False, 1, "UNSET", test_asset)
        self.nodes[0].generate(1)
        self.sync_all()
        received_by_address = self.nodes[1].listreceivedbyaddress(0, False, True)
        multi_asset_amount = [x for x in received_by_address if x['address'] == unconfidential_address2][0]['amount']
        assert_equal(multi_asset_amount['bitcoin'], value1 + value3)
        assert_equal(multi_asset_amount[test_asset], Decimal('0.00000003'))

        # Check blinded multisig functionality and partial blinding functionality

        # Get two pubkeys
        blinded_addr = self.nodes[0].getnewaddress()
        pubkey = self.nodes[0].getaddressinfo(blinded_addr)["pubkey"]
        blinded_addr2 = self.nodes[1].getnewaddress()
        pubkey2 = self.nodes[1].getaddressinfo(blinded_addr2)["pubkey"]
        pubkeys = [pubkey, pubkey2]
        # Add multisig address
        unconfidential_addr = self.nodes[0].addmultisigaddress(2, pubkeys)["address"]
        self.nodes[1].addmultisigaddress(2, pubkeys)
        self.nodes[0].importaddress(unconfidential_addr)
        self.nodes[1].importaddress(unconfidential_addr)
        # Use blinding key from node 0's original getnewaddress call
        blinding_pubkey = self.nodes[0].getaddressinfo(blinded_addr)["confidential_key"]
        blinding_key = self.nodes[0].dumpblindingkey(blinded_addr)
        # Create blinded address from p2sh address and import corresponding privkey
        blinded_multisig_addr = self.nodes[0].createblindedaddress(unconfidential_addr, blinding_pubkey)
        self.nodes[0].importblindingkey(blinded_multisig_addr, blinding_key)

        # Issue new asset, to use different assets in one transaction when doing
        # partial blinding. Just to make these tests a bit more elaborate :-)
        issued3 = self.nodes[2].issueasset(1, 0)
        self.nodes[2].generate(1)
        self.sync_all()
        node2_balance = self.nodes[2].getbalance()
        assert(issued3['asset'] in node2_balance)
        assert_equal(node2_balance[issued3['asset']], Decimal(1))

        # Send asset to blinded multisig address and check that it was received
        self.nodes[2].sendtoaddress(address=blinded_multisig_addr, amount=1, assetlabel=issued3['asset'])
        self.sync_all()
        # We will use this multisig UTXO in our partially-blinded transaction,
        # and will also check that multisig UTXO can be successfully spent
        # after the transaction is signed by node1 and node0 in succession.
        unspent_asset = self.nodes[0].listunspent(0, 0, [unconfidential_addr], True, {"asset":issued3['asset']})
        assert_equal(len(unspent_asset), 1)
        assert(issued3['asset'] not in self.nodes[2].getbalance())

        # Create new UTXO on node0 to be used in our partially-blinded transaction
        blinded_addr = self.nodes[0].getnewaddress()
        addr = self.nodes[0].validateaddress(blinded_addr)["unconfidential"]
        self.nodes[0].sendtoaddress(blinded_addr, 0.1)
        unspent = self.nodes[0].listunspent(0, 0, [addr])
        assert_equal(len(unspent), 1)

        # Create new UTXO on node1 to be used in our partially-blinded transaction
        blinded_addr2 = self.nodes[1].getnewaddress()
        addr2 = self.nodes[1].validateaddress(blinded_addr2)["unconfidential"]
        self.nodes[1].sendtoaddress(blinded_addr2, 0.11)
        unspent2 = self.nodes[1].listunspent(0, 0, [addr2])
        assert_equal(len(unspent2), 1)

        # The transaction will have three non-fee outputs
        dst_addr = self.nodes[0].getnewaddress()
        dst_addr2 = self.nodes[1].getnewaddress()
        dst_addr3 = self.nodes[2].getnewaddress()

        # Inputs are selected up front
        inputs = [{"txid": unspent2[0]["txid"], "vout": unspent2[0]["vout"]}, {"txid": unspent[0]["txid"], "vout": unspent[0]["vout"]}, {"txid": unspent_asset[0]["txid"], "vout": unspent_asset[0]["vout"]}]

        # Create one part of the transaction to partially blind
        rawtx = self.nodes[0].createrawtransaction(
            inputs, {dst_addr2: Decimal("0.01")})

        # Create another part of the transaction to partially blind
        rawtx2 = self.nodes[0].createrawtransaction(
            inputs,
            {dst_addr: Decimal("0.1"), dst_addr3: Decimal("1.0")},
            0,
            False,
            {dst_addr: unspent[0]['asset'], dst_addr3: unspent_asset[0]['asset']})

        sum_i = unspent2[0]["amount"] + unspent[0]["amount"]
        sum_o = 0.01 + 0.10 + 0.1
        assert_equal(int(round(sum_i*COIN)), int(round(sum_o*COIN)))

        # Blind the first part of the transaction - we need to supply the
        # assetcommmitments for all of the inputs, for the surjectionproof
        # to be valid after we combine the transactions
        blindtx = self.nodes[1].blindrawtransaction(
            rawtx, True, [
                unspent2[0]['assetcommitment'],
                unspent[0]['assetcommitment'],
                unspent_asset[0]['assetcommitment']
            ])

        # Combine the transactions

        # Blinded, but incomplete transaction.
        # 3 inputs and 1 output, but no fee output, and
        # it was blinded with 3 asset commitments, that means
        # the final transaction should have 3 inputs.
        btx = CTransaction()
        btx.deserialize(io.BytesIO(hex_str_to_bytes(blindtx)))

        # Unblinded transaction, with 3 inputs and 2 outputs.
        # We will add them to the other transaction to make it complete.
        ubtx = CTransaction()
        ubtx.deserialize(io.BytesIO(hex_str_to_bytes(rawtx2)))

        # We will add outputs of unblinded transaction
        # on top of inputs and outputs of the blinded, but incomplete transaction.
        # We also append empty witness instances to make witness arrays match
        # vin/vout arrays
        btx.wit.vtxinwit.append(CTxInWitness())
        btx.vout.append(ubtx.vout[0])
        btx.wit.vtxoutwit.append(CTxOutWitness())
        btx.wit.vtxinwit.append(CTxInWitness())
        btx.vout.append(ubtx.vout[1])
        btx.wit.vtxoutwit.append(CTxOutWitness())
        # Add explicit fee output
        btx.vout.append(CTxOut(nValue=CTxOutValue(10000000),
                               nAsset=CTxOutAsset(BITCOIN_ASSET_OUT)))
        btx.wit.vtxoutwit.append(CTxOutWitness())

        # Input 0 is bitcoin asset (already blinded)
        # Input 1 is also bitcoin asset
        # Input 2 is our new asset

        # Blind with wrong order of assetcommitments - such transaction should be rejected
        blindtx = self.nodes[0].blindrawtransaction(
            bytes_to_hex_str(btx.serialize()), True, [
                unspent_asset[0]['assetcommitment'],
                unspent[0]['assetcommitment'],
                unspent2[0]['assetcommitment']
            ])

        stx2 = self.nodes[1].signrawtransactionwithwallet(blindtx)
        stx = self.nodes[0].signrawtransactionwithwallet(stx2['hex'])
        self.sync_all()

        assert_raises_rpc_error(-26, "bad-txns-in-ne-out", self.nodes[2].sendrawtransaction, stx['hex'])

        # Blind with correct order of assetcommitments
        blindtx = self.nodes[0].blindrawtransaction(
            bytes_to_hex_str(btx.serialize()), True, [
                unspent2[0]['assetcommitment'],
                unspent[0]['assetcommitment'],
                unspent_asset[0]['assetcommitment']
            ])

        stx2 = self.nodes[1].signrawtransactionwithwallet(blindtx)
        stx = self.nodes[0].signrawtransactionwithwallet(stx2['hex'])
        txid = self.nodes[2].sendrawtransaction(stx['hex'])
        self.nodes[2].generate(1)
        assert self.nodes[2].getrawtransaction(txid, 1)['confirmations'] == 1
        self.sync_all()

        # Check that the sent asset has reached its destination
        unconfidential_dst_addr3 = self.nodes[2].validateaddress(dst_addr3)["unconfidential"]
        unspent_asset2 = self.nodes[2].listunspent(1, 1, [unconfidential_dst_addr3], True, {"asset":issued3['asset']})
        assert_equal(len(unspent_asset2), 1)
        assert_equal(unspent_asset2[0]['amount'], Decimal(1))
        # And that the balance was correctly updated
        assert_equal(self.nodes[2].getbalance()[issued3['asset']], Decimal(1))

        # Basic checks of rawblindrawtransaction functionality
        blinded_addr = self.nodes[0].getnewaddress()
        addr = self.nodes[0].validateaddress(blinded_addr)["unconfidential"]
        self.nodes[0].sendtoaddress(blinded_addr, 1)
        self.nodes[0].sendtoaddress(blinded_addr, 3)
        unspent = self.nodes[0].listunspent(0, 0)
        rawtx = self.nodes[0].createrawtransaction([{"txid":unspent[0]["txid"], "vout":unspent[0]["vout"]}, {"txid":unspent[1]["txid"], "vout":unspent[1]["vout"]}], {addr:unspent[0]["amount"]+unspent[1]["amount"]-Decimal("0.2"), "fee":Decimal("0.2")})
        # Blinding will fail with 2 blinded inputs and 0 blinded outputs
        # since it has no notion of a wallet to fill in a 0-value OP_RETURN output
        try:
            self.nodes[0].rawblindrawtransaction(rawtx, [unspent[0]["amountblinder"], unspent[1]["amountblinder"]], [unspent[0]["amount"], unspent[1]["amount"]], [unspent[0]["asset"], unspent[1]["asset"]], [unspent[0]["assetblinder"], unspent[1]["assetblinder"]])
            raise AssertionError("Shouldn't be able to blind 2 input 0 output transaction via rawblindraw")
        except JSONRPCException:
            pass

        # Blinded destination added, can blind, sign and send
        rawtx = self.nodes[0].createrawtransaction([{"txid":unspent[0]["txid"], "vout":unspent[0]["vout"]}, {"txid":unspent[1]["txid"], "vout":unspent[1]["vout"]}], {blinded_addr:unspent[0]["amount"]+unspent[1]["amount"]-Decimal("0.002"), "fee":Decimal("0.002")})
        signtx = self.nodes[0].signrawtransactionwithwallet(rawtx)

        try:
            self.nodes[0].sendrawtransaction(signtx["hex"])
            raise AssertionError("Shouldn't be able to send unblinded tx with emplaced pubkey in output without additional argument")
        except JSONRPCException:
            pass

        blindtx = self.nodes[0].rawblindrawtransaction(rawtx, [unspent[0]["amountblinder"], unspent[1]["amountblinder"]], [unspent[0]["amount"], unspent[1]["amount"]], [unspent[0]["asset"], unspent[1]["asset"]], [unspent[0]["assetblinder"], unspent[1]["assetblinder"]])
        signtx = self.nodes[0].signrawtransactionwithwallet(blindtx)
        txid = self.nodes[0].sendrawtransaction(signtx["hex"])
        for output in self.nodes[0].decoderawtransaction(blindtx)["vout"]:
            if "asset" in output and output["scriptPubKey"]["type"] != "fee":
                raise AssertionError("An unblinded output exists")

        # Test fundrawtransaction with multiple assets
        issue = self.nodes[0].issueasset(1, 0)
        assetaddr = self.nodes[0].getnewaddress()
        rawtx = self.nodes[0].createrawtransaction([], {assetaddr:1, self.nodes[0].getnewaddress():2}, 0, False, {assetaddr:issue["asset"]})
        funded = self.nodes[0].fundrawtransaction(rawtx)
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        signed = self.nodes[0].signrawtransactionwithwallet(blinded)
        txid = self.nodes[0].sendrawtransaction(signed["hex"])

        # Test fundrawtransaction with multiple inputs, creating > vout.size change
        rawtx = self.nodes[0].createrawtransaction([{"txid":txid, "vout":0}, {"txid":txid, "vout":1}], {self.nodes[0].getnewaddress():5})
        funded = self.nodes[0].fundrawtransaction(rawtx)
        blinded = self.nodes[0].blindrawtransaction(funded["hex"])
        signed = self.nodes[0].signrawtransactionwithwallet(blinded)
        txid = self.nodes[0].sendrawtransaction(signed["hex"])

        # Test corner case where wallet appends a OP_RETURN output, yet doesn't blind it
        # due to the fact that the output value is 0-value and input pedersen commitments
        # self-balance. This is rare corner case, but ok.
        unblinded = self.nodes[0].validateaddress(self.nodes[0].getnewaddress())["unconfidential"]
        self.nodes[0].sendtoaddress(unblinded, self.nodes[0].getbalance()["bitcoin"], "", "", True)
        # Make tx with blinded destination and change outputs only
        self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[0].getbalance()["bitcoin"]/2)
        # Send back again, this transaction should have 3 outputs, all unblinded
        txid = self.nodes[0].sendtoaddress(unblinded, self.nodes[0].getbalance()["bitcoin"], "", "", True)
        outputs = self.nodes[0].getrawtransaction(txid, 1)["vout"]
        assert_equal(len(outputs), 3)
        assert("value" in outputs[0] and "value" in outputs[1] and "value" in outputs[2])
        assert_equal(outputs[2]["scriptPubKey"]["type"], 'nulldata')

        # Test burn argument in createrawtransaction
        raw_burn1 = self.nodes[0].createrawtransaction([], {self.nodes[0].getnewaddress():1, "burn":2})
        decode_burn1 = self.nodes[0].decoderawtransaction(raw_burn1)
        assert_equal(len(decode_burn1["vout"]), 2)
        found_pay = False
        found_burn = False
        for output in decode_burn1["vout"]:
            if output["scriptPubKey"]["asm"] == "OP_RETURN":
                found_burn = True
                if output["asset"] != self.nodes[0].dumpassetlabels()["bitcoin"]:
                    raise Exception("Burn should have been bitcoin(policyAsset)")
            if output["scriptPubKey"]["type"] == "scripthash":
                found_pay = True
        assert(found_pay and found_burn)

        raw_burn2 = self.nodes[0].createrawtransaction([], {self.nodes[0].getnewaddress():1, "burn":2}, 101, False, {"burn":"deadbeef"*8})
        decode_burn2 = self.nodes[0].decoderawtransaction(raw_burn2)
        assert_equal(len(decode_burn2["vout"]), 2)
        found_pay = False
        found_burn = False
        for output in decode_burn2["vout"]:
            if output["scriptPubKey"]["asm"] == "OP_RETURN":
                found_burn = True
                if output["asset"] != "deadbeef"*8:
                    raise Exception("Burn should have been deadbeef")
            if output["scriptPubKey"]["type"] == "scripthash":
                found_pay = True
        assert(found_pay and found_burn)
    def run_test(self):
        self.description = "Covers the reorg with a zc public spend in vtx"
        self.init_test()
        DENOM_TO_USE = 10  # zc denomination
        INITAL_MINED_BLOCKS = 321  # First mined blocks (rewards collected to mint)
        MORE_MINED_BLOCKS = 105  # More blocks mined before spending zerocoins

        # 1) Starting mining blocks
        self.log.info("Mining %d blocks.." % INITAL_MINED_BLOCKS)
        self.node.generate(INITAL_MINED_BLOCKS)

        # 2) Mint 2 zerocoins
        self.node.mintzerocoin(DENOM_TO_USE)
        self.node.generate(1)
        self.node.mintzerocoin(DENOM_TO_USE)
        self.node.generate(1)

        # 3) Mine additional blocks and collect the mints
        self.log.info("Mining %d blocks.." % MORE_MINED_BLOCKS)
        self.node.generate(MORE_MINED_BLOCKS)
        self.log.info("Collecting mints...")
        mints = self.node.listmintedzerocoins(True, False)
        assert len(mints) == 2, "mints list has len %d (!= 2)" % len(mints)

        # 4) Get unspent coins and chain tip
        self.unspent = self.node.listunspent()
        block_count = self.node.getblockcount()
        pastBlockHash = self.node.getblockhash(block_count)
        self.log.info(
            "Block count: %d - Current best: %s..." %
            (self.node.getblockcount(), self.node.getbestblockhash()[:5]))
        pastBlock = CBlock()
        pastBlock.deserialize(
            BytesIO(hex_str_to_bytes(self.node.getblock(pastBlockHash,
                                                        False))))
        checkpoint = pastBlock.nAccumulatorCheckpoint

        # 5) get the raw zerocoin spend txes
        self.log.info("Getting the raw zerocoin public spends...")
        public_spend_A = self.node.createrawzerocoinpublicspend(
            mints[0].get("serial hash"))
        tx_A = CTransaction()
        tx_A.deserialize(BytesIO(hex_str_to_bytes(public_spend_A)))
        tx_A.rehash()
        public_spend_B = self.node.createrawzerocoinpublicspend(
            mints[1].get("serial hash"))
        tx_B = CTransaction()
        tx_B.deserialize(BytesIO(hex_str_to_bytes(public_spend_B)))
        tx_B.rehash()
        # Spending same coins to different recipients to get different txids
        my_addy = "yAVWM5urwaTyhiuFQHP2aP47rdZsLUG5PH"
        public_spend_A2 = self.node.createrawzerocoinpublicspend(
            mints[0].get("serial hash"), my_addy)
        tx_A2 = CTransaction()
        tx_A2.deserialize(BytesIO(hex_str_to_bytes(public_spend_A2)))
        tx_A2.rehash()
        public_spend_B2 = self.node.createrawzerocoinpublicspend(
            mints[1].get("serial hash"), my_addy)
        tx_B2 = CTransaction()
        tx_B2.deserialize(BytesIO(hex_str_to_bytes(public_spend_B2)))
        tx_B2.rehash()
        self.log.info("tx_A id: %s" % str(tx_A.hash))
        self.log.info("tx_B id: %s" % str(tx_B.hash))
        self.log.info("tx_A2 id: %s" % str(tx_A2.hash))
        self.log.info("tx_B2 id: %s" % str(tx_B2.hash))

        self.test_nodes[0].handle_connect()

        # 6) create block_A --> main chain
        self.log.info("")
        self.log.info("*** block_A ***")
        self.log.info("Creating block_A [%d] with public spend tx_A in it." %
                      (block_count + 1))
        block_A = self.new_block(block_count, pastBlock, checkpoint, tx_A)
        self.log.info("Hash of block_A: %s..." % block_A.hash[:5])
        self.log.info("sending block_A...")
        var = self.node.submitblock(bytes_to_hex_str(block_A.serialize()))
        if var is not None:
            self.log.info("result: %s" % str(var))
            raise Exception("block_A not accepted")
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count + 1)
        assert_equal(self.node.getbestblockhash(), block_A.hash)
        self.log.info("  >>  block_A connected  <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_A [%d]\n" %
            (block_count, block_count + 1))

        # 7) create block_B --> forked chain
        self.log.info("*** block_B ***")
        self.log.info("Creating block_B [%d] with public spend tx_B in it." %
                      (block_count + 1))
        block_B = self.new_block(block_count, pastBlock, checkpoint, tx_B)
        self.log.info("Hash of block_B: %s..." % block_B.hash[:5])
        self.log.info("sending block_B...")
        var = self.node.submitblock(bytes_to_hex_str(block_B.serialize()))
        self.log.info("result of block_B submission: %s" % str(var))
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count + 1)
        assert_equal(self.node.getbestblockhash(), block_A.hash)
        # block_B is not added. Chain remains the same
        self.log.info("  >>  block_B not connected  <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_A [%d]\n" %
            (block_count, block_count + 1))

        # 8) Create new block block_C on the forked chain (block_B)
        block_count += 1
        self.log.info("*** block_C ***")
        self.log.info(
            "Creating block_C [%d] on top of block_B triggering the reorg" %
            (block_count + 1))
        block_C = self.new_block(block_count, block_B, checkpoint)
        self.log.info("Hash of block_C: %s..." % block_C.hash[:5])
        self.log.info("sending block_C...")
        var = self.node.submitblock(bytes_to_hex_str(block_C.serialize()))
        if var is not None:
            self.log.info("result: %s" % str(var))
            raise Exception("block_C not accepted")
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count + 1)
        assert_equal(self.node.getbestblockhash(), block_C.hash)
        self.log.info(
            "  >>  block_A disconnected / block_B and block_C connected  <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_B [%d] --> block_C [%d]\n"
            % (block_count - 1, block_count, block_count + 1))

        # 7) Now create block_D which tries to spend same coin of tx_B again on the (new) main chain
        # (this block will be rejected)
        block_count += 1
        self.log.info("*** block_D ***")
        self.log.info(
            "Creating block_D [%d] trying to double spend the coin of tx_B" %
            (block_count + 1))
        block_D = self.new_block(block_count, block_C, checkpoint, tx_B2)
        self.log.info("Hash of block_D: %s..." % block_D.hash[:5])
        self.log.info("sending block_D...")
        var = self.node.submitblock(bytes_to_hex_str(block_D.serialize()))
        self.log.info("result of block_D submission: %s" % str(var))
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count)
        assert_equal(self.node.getbestblockhash(), block_C.hash)
        # block_D is not added. Chain remains the same
        self.log.info("  >>  block_D rejected  <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_B [%d] --> block_C [%d]\n"
            % (block_count - 2, block_count - 1, block_count))

        # 8) Now create block_E which spends tx_A again on main chain
        # (this block will be accepted and connected since tx_A was spent on block_A now disconnected)
        self.log.info("*** block_E ***")
        self.log.info("Creating block_E [%d] trying spend tx_A on main chain" %
                      (block_count + 1))
        block_E = self.new_block(block_count, block_C, checkpoint, tx_A)
        self.log.info("Hash of block_E: %s..." % block_E.hash[:5])
        self.log.info("sending block_E...")
        var = self.node.submitblock(bytes_to_hex_str(block_E.serialize()))
        if var is not None:
            self.log.info("result: %s" % str(var))
            raise Exception("block_E not accepted")
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count + 1)
        assert_equal(self.node.getbestblockhash(), block_E.hash)
        self.log.info("  >>  block_E connected <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_B [%d] --> block_C [%d] --> block_E [%d]\n"
            % (block_count - 2, block_count - 1, block_count, block_count + 1))

        # 9) Now create block_F which tries to double spend the coin in tx_A
        # # (this block will be rejected)
        block_count += 1
        self.log.info("*** block_F ***")
        self.log.info(
            "Creating block_F [%d] trying to double spend the coin in tx_A" %
            (block_count + 1))
        block_F = self.new_block(block_count, block_E, checkpoint, tx_A2)
        self.log.info("Hash of block_F: %s..." % block_F.hash[:5])
        self.log.info("sending block_F...")
        var = self.node.submitblock(bytes_to_hex_str(block_F.serialize()))
        self.log.info("result of block_F submission: %s" % str(var))
        time.sleep(2)
        assert_equal(self.node.getblockcount(), block_count)
        assert_equal(self.node.getbestblockhash(), block_E.hash)
        self.log.info("  >>  block_F rejected <<")
        self.log.info(
            "Current chain: ... --> block_0 [%d] --> block_B [%d] --> block_C [%d] --> block_E [%d]\n"
            % (block_count - 3, block_count - 2, block_count - 1, block_count))
        self.log.info("All good.")
Esempio n. 57
0
    def test_coinbase_witness(self):
        def WitToHex(obj):
            return bytes_to_hex_str(obj.serialize(with_witness=True))

        block = self.nodes[0].getnewblockhex()
        block_struct = FromHex(CBlock(), block)

        # Test vanilla block round-trip
        self.nodes[0].testproposedblock(WitToHex(block_struct))

        # Assert there's scriptWitness in the coinbase input that is the witness nonce and nothing else
        assert_equal(block_struct.vtx[0].wit.vtxinwit[0].scriptWitness.stack,
                     [b'\x00' * 32])
        assert_equal(
            block_struct.vtx[0].wit.vtxinwit[0].vchIssuanceAmountRangeproof,
            b'')
        assert_equal(
            block_struct.vtx[0].wit.vtxinwit[0].vchInflationKeysRangeproof,
            b'')
        assert_equal(block_struct.vtx[0].wit.vtxinwit[0].peginWitness.stack,
                     [])

        # Add extra witness that isn't covered by witness merkle root, make sure blocks are still valid
        block_witness_stuffed = copy.deepcopy(block_struct)
        block_witness_stuffed.vtx[0].wit.vtxinwit[
            0].vchIssuanceAmountRangeproof = b'\x00'
        assert_raises_rpc_error(-25, "bad-cb-witness",
                                self.nodes[0].testproposedblock,
                                WitToHex(block_witness_stuffed))
        block_witness_stuffed = copy.deepcopy(block_struct)
        block_witness_stuffed.vtx[0].wit.vtxinwit[
            0].vchInflationKeysRangeproof = b'\x00'
        assert_raises_rpc_error(-25, "bad-cb-witness",
                                self.nodes[0].testproposedblock,
                                WitToHex(block_witness_stuffed))
        block_witness_stuffed = copy.deepcopy(block_struct)

        # Let's blow out block weight limit by adding 4MW here
        block_witness_stuffed.vtx[0].wit.vtxinwit[0].peginWitness.stack = [
            b'\x00' * 4000000
        ]
        assert_raises_rpc_error(-25, "bad-cb-witness",
                                self.nodes[0].testproposedblock,
                                WitToHex(block_witness_stuffed))

        # Test that node isn't blinded to the block
        # Previously an over-stuffed block >4MW would have been marked permanently bad
        # as it already passes witness merkle and regular merkle root checks
        block_height = self.nodes[0].getblockcount()
        assert_equal(
            self.nodes[0].submitblock(WitToHex(block_witness_stuffed)),
            "bad-cb-witness")
        assert_equal(block_height, self.nodes[0].getblockcount())
        assert_equal(self.nodes[0].submitblock(WitToHex(block_struct)), None)
        assert_equal(block_height + 1, self.nodes[0].getblockcount())

        # New block since we used the first one
        block_struct = FromHex(CBlock(), self.nodes[0].getnewblockhex())
        block_witness_stuffed = copy.deepcopy(block_struct)

        # Add extra witness data that is covered by witness merkle root, make sure invalid
        assert_equal(
            block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchSurjectionproof,
            b'')
        assert_equal(
            block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchRangeproof, b'')
        block_witness_stuffed.vtx[0].wit.vtxoutwit[
            0].vchRangeproof = b'\x00' * 100000
        block_witness_stuffed.vtx[0].wit.vtxoutwit[
            0].vchSurjectionproof = b'\x00' * 100000
        assert_raises_rpc_error(-25, "bad-witness-merkle-match",
                                self.nodes[0].testproposedblock,
                                WitToHex(block_witness_stuffed))
        witness_root_hex = block_witness_stuffed.calc_witness_merkle_root()
        witness_root = uint256_from_str(
            hex_str_to_bytes(witness_root_hex)[::-1])
        block_witness_stuffed.vtx[0].vout[-1] = CTxOut(
            0, get_witness_script(witness_root, 0))
        block_witness_stuffed.vtx[0].rehash()
        block_witness_stuffed.hashMerkleRoot = block_witness_stuffed.calc_merkle_root(
        )
        block_witness_stuffed.rehash()
        assert_raises_rpc_error(-25, "bad-cb-amount",
                                self.nodes[0].testproposedblock,
                                WitToHex(block_witness_stuffed))
        assert_greater_than(
            len(WitToHex(block_witness_stuffed)),
            100000 * 4)  # Make sure the witness data is actually serialized

        # A CTxIn that always serializes the asset issuance, even for coinbases.
        class AlwaysIssuanceCTxIn(CTxIn):
            def serialize(self):
                r = b''
                outpoint = COutPoint()
                outpoint.hash = self.prevout.hash
                outpoint.n = self.prevout.n
                outpoint.n |= OUTPOINT_ISSUANCE_FLAG
                r += outpoint.serialize()
                r += ser_string(self.scriptSig)
                r += struct.pack("<I", self.nSequence)
                r += self.assetIssuance.serialize()
                return r

        # Test that issuance inputs in coinbase don't survive a serialization round-trip
        # (even though this can't cause issuance to occur either way due to VerifyCoinbaseAmount semantics)
        block_witness_stuffed = copy.deepcopy(block_struct)
        coinbase_orig = copy.deepcopy(block_witness_stuffed.vtx[0].vin[0])
        coinbase_ser_size = len(
            block_witness_stuffed.vtx[0].vin[0].serialize())
        block_witness_stuffed.vtx[0].vin[0] = AlwaysIssuanceCTxIn()
        block_witness_stuffed.vtx[0].vin[0].prevout = coinbase_orig.prevout
        block_witness_stuffed.vtx[0].vin[0].scriptSig = coinbase_orig.scriptSig
        block_witness_stuffed.vtx[0].vin[0].nSequence = coinbase_orig.nSequence
        block_witness_stuffed.vtx[0].vin[0].assetIssuance.nAmount.setToAmount(
            1)
        bad_coinbase_ser_size = len(
            block_witness_stuffed.vtx[0].vin[0].serialize())
        # 32+32+9+1 should be serialized for each assetIssuance field
        assert_equal(bad_coinbase_ser_size,
                     coinbase_ser_size + 32 + 32 + 9 + 1)
        assert (not block_witness_stuffed.vtx[0].vin[0].assetIssuance.isNull())
        assert_raises_rpc_error(-22, "TX decode failed",
                                self.nodes[0].decoderawtransaction,
                                ToHex(block_witness_stuffed.vtx[0]))
    def run_test(self):
        url = urllib.parse.urlparse(self.nodes[0].url)
        self.log.info("Mining blocks...")

        self.nodes[0].generate(1)
        self.sync_all()
        self.nodes[2].generate(100)
        self.sync_all()

        assert_equal(self.nodes[0].getbalance(), 5000)

        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        self.sync_all()
        self.nodes[2].generate(1)
        self.sync_all()
        bb_hash = self.nodes[0].getbestblockhash()

        assert_equal(self.nodes[1].getbalance(),
                     Decimal("0.1"))  #balance now should be 0.1 on node 1

        # load the latest 0.1 tx over the REST API
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/tx/' + txid + self.FORMAT_SEPARATOR + "json")
        json_obj = json.loads(json_string)
        vintx = json_obj['vin'][0][
            'txid']  # get the vin to later check for utxo (should be spent by then)
        # get n of 0.1 outpoint
        n = 0
        for vout in json_obj['vout']:
            if vout['value'] == 0.1:
                n = vout['n']

        #######################################
        # GETUTXOS: query an unspent outpoint #
        #######################################
        json_request = '/checkmempool/' + txid + '-' + str(n)
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)

        #check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        #make sure there is one utxo
        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['utxos'][0]['value'], 0.1)

        #################################################
        # GETUTXOS: now query an already spent outpoint #
        #################################################
        json_request = '/checkmempool/' + vintx + '-0'
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)

        #check chainTip response
        assert_equal(json_obj['chaintipHash'], bb_hash)

        # make sure there is no utxo in the response because this oupoint has been spent
        assert_equal(len(json_obj['utxos']), 0)

        #check bitmap
        assert_equal(json_obj['bitmap'], "0")

        ##################################################
        # GETUTXOS: now check both with the same request #
        ##################################################
        json_request = '/checkmempool/' + txid + '-' + str(
            n) + '/' + vintx + '-0'
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        assert_equal(len(json_obj['utxos']), 1)
        assert_equal(json_obj['bitmap'], "10")

        #test binary response
        bb_hash = self.nodes[0].getbestblockhash()

        binaryRequest = b'\x01\x02'
        binaryRequest += hex_str_to_bytes(txid)
        binaryRequest += pack("i", n)
        binaryRequest += hex_str_to_bytes(vintx)
        binaryRequest += pack("i", 0)

        bin_response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos' + self.FORMAT_SEPARATOR + 'bin', binaryRequest)
        output = BytesIO()
        output.write(bin_response)
        output.seek(0)
        chainHeight = unpack("i", output.read(4))[0]
        hashFromBinResponse = hex(deser_uint256(output))[2:].zfill(64)

        assert_equal(
            bb_hash, hashFromBinResponse
        )  #check if getutxo's chaintip during calculation was fine
        assert_equal(chainHeight, 102)  #chain height must be 102

        ############################
        # GETUTXOS: mempool checks #
        ############################

        # do a tx and don't sync
        txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1)
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/tx/' + txid + self.FORMAT_SEPARATOR + "json")
        json_obj = json.loads(json_string)
        #vintx = json_obj['vin'][0]['txid'] # get the vin to later check for utxo (should be spent by then)
        # get n of 0.1 outpoint
        n = 0
        for vout in json_obj['vout']:
            if vout['value'] == 0.1:
                n = vout['n']

        json_request = '/' + txid + '-' + str(n)
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        assert_equal(
            len(json_obj['utxos']), 0
        )  #there should be an outpoint because it has just added to the mempool

        json_request = '/checkmempool/' + txid + '-' + str(n)
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        assert_equal(
            len(json_obj['utxos']), 1
        )  #there should be an outpoint because it has just added to the mempool

        #do some invalid requests
        json_request = '{"checkmempool'
        response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos' + self.FORMAT_SEPARATOR + 'json', json_request,
            True)
        assert_equal(
            response.status,
            400)  #must be a 400 because we send an invalid json request

        json_request = '{"checkmempool'
        response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos' + self.FORMAT_SEPARATOR + 'bin', json_request,
            True)
        assert_equal(
            response.status,
            400)  #must be a 400 because we send an invalid bin request

        response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos/checkmempool' + self.FORMAT_SEPARATOR + 'bin', '',
            True)
        assert_equal(
            response.status,
            400)  #must be a 400 because we send an invalid bin request

        #test limits
        json_request = '/checkmempool/'
        for _ in range(0, 20):
            json_request += txid + '-' + str(n) + '/'
        json_request = json_request.rstrip("/")
        response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json',
            '', True)
        assert_equal(response.status,
                     400)  #must be a 400 because we exceeding the limits

        json_request = '/checkmempool/'
        for _ in range(0, 15):
            json_request += txid + '-' + str(n) + '/'
        json_request = json_request.rstrip("/")
        response = http_post_call(
            url.hostname, url.port,
            '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json',
            '', True)
        assert_equal(response.status,
                     200)  #must be a 200 because we are within the limits

        self.nodes[0].generate(1)  #generate block to not affect upcoming tests
        self.sync_all()

        ################
        # /rest/block/ #
        ################

        # check binary format
        response = http_get_call(
            url.hostname, url.port,
            '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + "bin", True)
        assert_equal(response.status, 200)
        assert_greater_than(int(response.getheader('content-length')), 80)
        response_str = response.read()

        # compare with block header
        response_header = http_get_call(
            url.hostname, url.port,
            '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "bin", True)
        assert_equal(response_header.status, 200)
        assert_equal(int(response_header.getheader('content-length')), 80)
        response_header_str = response_header.read()
        assert_equal(response_str[0:80], response_header_str)

        # check block hex format
        response_hex = http_get_call(
            url.hostname, url.port,
            '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + "hex", True)
        assert_equal(response_hex.status, 200)
        assert_greater_than(int(response_hex.getheader('content-length')), 160)
        response_hex_str = response_hex.read()
        assert_equal(
            encode(response_str, "hex_codec")[0:160], response_hex_str[0:160])

        # compare with hex block header
        response_header_hex = http_get_call(
            url.hostname, url.port,
            '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "hex", True)
        assert_equal(response_header_hex.status, 200)
        assert_greater_than(
            int(response_header_hex.getheader('content-length')), 160)
        response_header_hex_str = response_header_hex.read()
        assert_equal(response_hex_str[0:160], response_header_hex_str[0:160])
        assert_equal(
            encode(response_header_str, "hex_codec")[0:160],
            response_header_hex_str[0:160])

        # check json format
        block_json_string = http_get_call(
            url.hostname, url.port,
            '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + 'json')
        block_json_obj = json.loads(block_json_string)
        assert_equal(block_json_obj['hash'], bb_hash)

        # compare with json block header
        response_header_json = http_get_call(
            url.hostname, url.port,
            '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "json",
            True)
        assert_equal(response_header_json.status, 200)
        response_header_json_str = response_header_json.read().decode('utf-8')
        json_obj = json.loads(response_header_json_str, parse_float=Decimal)
        assert_equal(len(json_obj),
                     1)  #ensure that there is one header in the json response
        assert_equal(json_obj[0]['hash'],
                     bb_hash)  #request/response hash should be the same

        #compare with normal RPC block response
        rpc_block_json = self.nodes[0].getblock(bb_hash)
        assert_equal(json_obj[0]['hash'], rpc_block_json['hash'])
        assert_equal(json_obj[0]['confirmations'],
                     rpc_block_json['confirmations'])
        assert_equal(json_obj[0]['height'], rpc_block_json['height'])
        assert_equal(json_obj[0]['version'], rpc_block_json['version'])
        assert_equal(json_obj[0]['merkleroot'], rpc_block_json['merkleroot'])
        assert_equal(json_obj[0]['time'], rpc_block_json['time'])
        assert_equal(json_obj[0]['nonce'], rpc_block_json['nonce'])
        assert_equal(json_obj[0]['bits'], rpc_block_json['bits'])
        assert_equal(json_obj[0]['difficulty'], rpc_block_json['difficulty'])
        assert_equal(json_obj[0]['chainwork'], rpc_block_json['chainwork'])
        assert_equal(json_obj[0]['previousblockhash'],
                     rpc_block_json['previousblockhash'])

        #see if we can get 5 headers in one response
        self.nodes[1].generate(5)
        self.sync_all()
        response_header_json = http_get_call(
            url.hostname, url.port,
            '/rest/headers/5/' + bb_hash + self.FORMAT_SEPARATOR + "json",
            True)
        assert_equal(response_header_json.status, 200)
        response_header_json_str = response_header_json.read().decode('utf-8')
        json_obj = json.loads(response_header_json_str)
        assert_equal(len(json_obj), 5)  #now we should have 5 header objects

        # do tx test
        tx_hash = block_json_obj['tx'][0]['txid']
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/tx/' + tx_hash + self.FORMAT_SEPARATOR + "json")
        json_obj = json.loads(json_string)
        assert_equal(json_obj['txid'], tx_hash)

        # check hex format response
        hex_string = http_get_call(
            url.hostname, url.port,
            '/rest/tx/' + tx_hash + self.FORMAT_SEPARATOR + "hex", True)
        assert_equal(hex_string.status, 200)
        assert_greater_than(int(response.getheader('content-length')), 10)

        # check block tx details
        # let's make 3 tx and mine them on node 1
        txs = [
            self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11),
            self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11),
            self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11)
        ]
        self.sync_all()

        # check that there are exactly 3 transactions in the TX memory pool before generating the block
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/mempool/info' + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        assert_equal(json_obj['size'], 3)
        # the size of the memory pool should be greater than 3x ~100 bytes
        assert_greater_than(json_obj['bytes'], 300)

        # check that there are our submitted transactions in the TX memory pool
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/mempool/contents' + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        for tx in txs:
            assert_equal(tx in json_obj, True)

        # now mine the transactions
        newblockhash = self.nodes[1].generate(1)
        self.sync_all()

        #check if the 3 tx show up in the new block
        json_string = http_get_call(
            url.hostname, url.port,
            '/rest/block/' + newblockhash[0] + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        for tx in json_obj['tx']:
            if not 'coinbase' in tx['vin'][0]:  #exclude coinbase
                assert_equal(tx['txid'] in txs, True)

        #check the same but without tx details
        json_string = http_get_call(
            url.hostname, url.port, '/rest/block/notxdetails/' +
            newblockhash[0] + self.FORMAT_SEPARATOR + 'json')
        json_obj = json.loads(json_string)
        for tx in txs:
            assert_equal(tx in json_obj['tx'], True)

        #test rest bestblock
        bb_hash = self.nodes[0].getbestblockhash()

        json_string = http_get_call(url.hostname, url.port,
                                    '/rest/chaininfo.json')
        json_obj = json.loads(json_string)
        assert_equal(json_obj['bestblockhash'], bb_hash)
Esempio n. 59
0
    def run_test(self):
        node = self.nodes[0]

        self.log.info('Start with empty mempool, and 200 blocks')
        self.mempool_size = 0
        assert_equal(node.getblockcount(), 200)
        assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
        coins = node.listunspent()

        self.log.info('Should not accept garbage to testmempoolaccept')
        assert_raises_rpc_error(
            -3, 'Expected type array, got string',
            lambda: node.testmempoolaccept(rawtxs='ff00baar'))
        assert_raises_rpc_error(
            -8, 'Array must contain exactly one raw transaction for now',
            lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
        assert_raises_rpc_error(
            -22, 'TX decode failed',
            lambda: node.testmempoolaccept(rawtxs=['ff00baar']))

        self.log.info('A transaction already in the blockchain')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_in_block = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': coin['txid'],
                    'vout': coin['vout']
                }],
                outputs=[{
                    node.getnewaddress(): 0.3
                }, {
                    node.getnewaddress(): 49
                }],
            ))['hex']
        txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block,
                                                maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_in_block,
                'allowed': False,
                'reject-reason': 'txn-already-known'
            }],
            rawtxs=[raw_tx_in_block],
        )

        self.log.info('A transaction not in the mempool')
        fee = 0.00000700
        raw_tx_0 = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    "txid": txid_in_block,
                    "vout": 0,
                    "sequence": BIP125_SEQUENCE_NUMBER
                }],  # RBF is used later
                outputs=[{
                    node.getnewaddress(): 0.3 - fee
                }],
            ))['hex']
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': True,
                'fee': fee * COIN
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A final transaction not in the mempool')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_final = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': coin['txid'],
                    'vout': coin['vout'],
                    "sequence": 0xffffffff
                }],  # SEQUENCE_FINAL
                outputs=[{
                    node.getnewaddress(): 0.025
                }],
                locktime=node.getblockcount() + 2000,  # Can be anything
            ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': True,
                'fee': (int(coin['amount']) - (0.025)) * COIN
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
        node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
        self.mempool_size += 1

        self.log.info('A transaction in the mempool')
        node.sendrawtransaction(hexstring=raw_tx_0)
        self.mempool_size += 1
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': False,
                'reject-reason': 'txn-already-in-mempool'
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that replaces a mempool transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(fee * COIN)  # Double the fee
        tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1  # Now, opt out of RBF
        raw_tx_0 = node.signrawtransactionwithwallet(
            tx.serialize().hex())['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': True,
                'fee': (2 * fee * COIN)
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that conflicts with an unconfirmed tx')
        # Send the transaction that replaces the mempool transaction and opts out of replaceability
        node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
        # take original raw_tx_0
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(4 * fee * COIN)  # Set more fee
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'txn-mempool-conflict'
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with missing inputs, that never existed')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info(
            'A transaction with missing inputs, that existed once in the past')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[
            0].prevout.n = 1  # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
        raw_tx_1 = node.signrawtransactionwithwallet(
            tx.serialize().hex())['hex']
        txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0)
        # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
        raw_tx_spend_both = node.signrawtransactionwithwallet(
            node.createrawtransaction(inputs=[
                {
                    'txid': txid_0,
                    'vout': 0
                },
                {
                    'txid': txid_1,
                    'vout': 0
                },
            ],
                                      outputs=[{
                                          node.getnewaddress(): 0.1
                                      }]))['hex']
        txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both,
                                                  maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        # Now see if we can add the coins back to the utxo set by sending the exact txs again
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[raw_tx_0],
        )
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_1,
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[raw_tx_1],
        )

        self.log.info('Create a signed "reference" tx for later use')
        raw_tx_reference = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': txid_spend_both,
                    'vout': 0
                }],
                outputs=[{
                    node.getnewaddress(): 0.05
                }],
            ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        # Reference tx should be valid on itself
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': True,
                'fee': (0.1 - 0.05) * COIN
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with no outputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = []
        # Skip re-signing the transaction for context independent checks from now on
        # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex'])))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-empty'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A really large transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * math.ceil(
            MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize()))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-oversize'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with negative output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue *= -1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-negative'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        # The following two validations prevent overflow of the output amounts (see CVE-2010-5139).
        self.log.info('A transaction with too large output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue = MAX_MONEY + 1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-toolarge'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large sum of output values')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = [tx.vout[0]] * 2
        tx.vout[0].nValue = MAX_MONEY
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-txouttotal-toolarge'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with duplicate inputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * 2
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-inputs-duplicate'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A coinbase transaction')
        # Pick the input of the first tx we signed, so it has to be a coinbase tx
        raw_tx_coinbase_spent = node.getrawtransaction(
            txid=node.decoderawtransaction(
                hexstring=raw_tx_in_block)['vin'][0]['txid'])
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'coinbase'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('Some nonstandard transactions')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.nVersion = 3  # A version currently non-standard
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'version'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_0])  # Some non-standard script
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptpubkey'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        key = ECKey()
        key.generate()
        pubkey = key.get_pubkey().get_bytes()
        tx.vout[0].scriptPubKey = CScript(
            [OP_2, pubkey, pubkey, pubkey, OP_3,
             OP_CHECKMULTISIG])  # Some bare multisig script (2-of-3)
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bare-multisig'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript([OP_HASH160
                                       ])  # Some not-pushonly scriptSig
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptsig-not-pushonly'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript(
            [b'a' * 1648])  # Some too large scriptSig (>1650 bytes)
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptsig-size'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        output_p2sh_burn = CTxOut(nValue=540,
                                  scriptPubKey=CScript(
                                      [OP_HASH160,
                                       hash160(b'burn'), OP_EQUAL]))
        num_scripts = 100000 // len(output_p2sh_burn.serialize(
        ))  # Use enough outputs to make the tx too large for our policy
        tx.vout = [output_p2sh_burn] * num_scripts
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'tx-size'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0] = output_p2sh_burn
        tx.vout[
            0].nValue -= 1  # Make output smaller, such that it is dust for our policy
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'dust'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
        tx.vout = [tx.vout[0]] * 2
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'multi-op-return'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A timelocked transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[
            0].nSequence -= 1  # Should be non-max, so locktime is not ignored
        tx.nLockTime = node.getblockcount() + 1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'non-final'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction that is locked by BIP68 sequence logic')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[
            0].nSequence = 2  # We could include it in the second block mined from now, but not the very next one
        # Can skip re-signing the tx because of early rejection
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'non-BIP68-final'
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
    def run_test(self):
        self.log.info("test -blocknotify")
        block_count = 10
        blocks = self.nodes[1].generatetoaddress(
            block_count, self.nodes[1].getnewaddress()
            if self.is_wallet_compiled() else ADDRESS_BCRT1_UNSPENDABLE)

        # wait at most 10 seconds for expected number of files before reading the content
        self.wait_until(
            lambda: len(os.listdir(self.blocknotify_dir)) == block_count,
            timeout=10)

        # directory content should equal the generated blocks hashes
        assert_equal(sorted(blocks), sorted(os.listdir(self.blocknotify_dir)))

        if self.is_wallet_compiled():
            self.log.info("test -walletnotify")
            # wait at most 10 seconds for expected number of files before reading the content
            self.wait_until(
                lambda: len(os.listdir(self.walletnotify_dir)) == block_count,
                timeout=10)

            # directory content should equal the generated transaction hashes
            txids_rpc = list(
                map(lambda t: notify_outputname(self.wallet, t['txid']),
                    self.nodes[1].listtransactions("*", block_count)))
            assert_equal(sorted(txids_rpc),
                         sorted(os.listdir(self.walletnotify_dir)))
            self.stop_node(1)
            for tx_file in os.listdir(self.walletnotify_dir):
                os.remove(os.path.join(self.walletnotify_dir, tx_file))

            self.log.info("test -walletnotify after rescan")
            # restart node to rescan to force wallet notifications
            self.start_node(1)
            self.connect_nodes(0, 1)

            self.wait_until(
                lambda: len(os.listdir(self.walletnotify_dir)) == block_count,
                timeout=10)

            # directory content should equal the generated transaction hashes
            txids_rpc = list(
                map(lambda t: notify_outputname(self.wallet, t['txid']),
                    self.nodes[1].listtransactions("*", block_count)))
            assert_equal(sorted(txids_rpc),
                         sorted(os.listdir(self.walletnotify_dir)))
            for tx_file in os.listdir(self.walletnotify_dir):
                os.remove(os.path.join(self.walletnotify_dir, tx_file))

            # Conflicting transactions tests. Give node 0 same wallet seed as
            # node 1, generate spends from node 0, and check notifications
            # triggered by node 1
            self.log.info("test -walletnotify with conflicting transactions")
            self.nodes[0].sethdseed(seed=self.nodes[1].dumpprivkey(
                keyhash_to_p2pkh(
                    hex_str_to_bytes(self.nodes[1].getwalletinfo()['hdseedid'])
                    [::-1])))
            self.nodes[0].rescanblockchain()
            self.nodes[0].generatetoaddress(100, ADDRESS_BCRT1_UNSPENDABLE)
            self.sync_blocks()

            # Generate transaction on node 0, sync mempools, and check for
            # notification on node 1.
            tx1 = self.nodes[0].sendtoaddress(
                address=ADDRESS_BCRT1_UNSPENDABLE, amount=1, replaceable=True)
            assert_equal(tx1 in self.nodes[0].getrawmempool(), True)
            self.sync_mempools()
            self.expect_wallet_notify([tx1])

            # Generate bump transaction, sync mempools, and check for bump1
            # notification. In the future, per
            # https://github.com/tokyocoin/tokyocoin/pull/9371, it might be better
            # to have notifications for both tx1 and bump1.
            bump1 = self.nodes[0].bumpfee(tx1)["txid"]
            assert_equal(bump1 in self.nodes[0].getrawmempool(), True)
            self.sync_mempools()
            self.expect_wallet_notify([bump1])

            # Add bump1 transaction to new block, checking for a notification
            # and the correct number of confirmations.
            self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE)
            self.sync_blocks()
            self.expect_wallet_notify([bump1])
            assert_equal(self.nodes[1].gettransaction(bump1)["confirmations"],
                         1)

            # Generate a second transaction to be bumped.
            tx2 = self.nodes[0].sendtoaddress(
                address=ADDRESS_BCRT1_UNSPENDABLE, amount=1, replaceable=True)
            assert_equal(tx2 in self.nodes[0].getrawmempool(), True)
            self.sync_mempools()
            self.expect_wallet_notify([tx2])

            # Bump tx2 as bump2 and generate a block on node 0 while
            # disconnected, then reconnect and check for notifications on node 1
            # about newly confirmed bump2 and newly conflicted tx2.
            self.disconnect_nodes(0, 1)
            bump2 = self.nodes[0].bumpfee(tx2)["txid"]
            self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE)
            assert_equal(self.nodes[0].gettransaction(bump2)["confirmations"],
                         1)
            assert_equal(tx2 in self.nodes[1].getrawmempool(), True)
            self.connect_nodes(0, 1)
            self.sync_blocks()
            self.expect_wallet_notify([bump2, tx2])
            assert_equal(self.nodes[1].gettransaction(bump2)["confirmations"],
                         1)