def test_get_set_input(): model_path = get_models(model_name='4in2out', arch=get_arch(), kind='tvm') device = 'cpu' model = DLRModel(model_path, device) input1 = np.asarray([1., 2.]) input2 = np.asarray([3., 4.]) input3 = np.asarray([5., 6., 7]) input4 = np.asarray([8., 9., 10]) model.run({'data1': input1, 'data2': input2, 'data3': input3, 'data4': input4}) assert np.array_equal(model.get_input('data1'), input1) assert np.array_equal(model.get_input('data2'), input2) assert np.array_equal(model.get_input('data3'), input3) assert np.array_equal(model.get_input('data4'), input4)
X, _ = load_svmlight_file(data_file, zero_based=True) expected = np.array([ 1.372033834457397461e+00, -2.448803186416625977e+00, 8.579480648040771484e-01, 1.369985580444335938e+00, -7.058695554733276367e-01, 4.134958684444427490e-01, -2.247941017150878906e+00, -2.461995363235473633e+00, -2.394921064376831055e+00, -1.191793322563171387e+00, 9.672126173973083496e-02, 2.687671184539794922e-01, 1.417675256729125977e+00, -1.832636356353759766e+00, -5.582004785537719727e-02, -9.497703313827514648e-01, -1.219825387001037598e+00, 1.512521862983703613e+00, -1.179921030998229980e-01, -2.383430719375610352e+00, -9.094548225402832031e-01 ]) expected = expected.reshape((-1, 1)) print('Testing inference on XGBoost LETOR...') assert np.allclose(model.run(_sparse_to_dense(X))[0], expected) if __name__ == '__main__': arch = get_arch() model_names = [ 'xgboost-mnist-1.10.0', 'xgboost-iris-1.10.0', 'xgboost-letor-1.10.0' ] for model_name in model_names: get_models(model_name, arch, kind='treelite') test_mnist() test_iris() test_letor() print('All tests passed!')
def set_up(): arch = get_arch() model_names = ['resnet18_v1', '4in2out', 'assign_op'] for model_name in model_names: get_models(model_name, arch, kind='tvm')