Esempio n. 1
0
def test_lp_learning_weights(seed, na, nc, ncat, na_gen, pcerrors):
    # Generate an ELECTRE TRI model and assignment examples
    if random_model_type == 'default':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'choquet':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)

    model2 = model.copy()

    # Generate a first set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)

    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments(aa_err, model.categories,
                                           pcerrors / 100)

    # Run linear program
    t1 = time.time()
    if random_model_type == 'default':
        lp_weights = LpMRSortWeights(model2, pt, aa_err, 0.0001)
    else:
        lp_weights = LpMRSortMobius(model2, pt, aa_err, 0.0001)
    t2 = time.time()
    obj = lp_weights.solve()
    t3 = time.time()

    # Compute new assignment and classification accuracy
    aa2 = model2.pessimist(pt)
    ok = ok_errors = ok2 = ok2_errors = 0
    for alt in a:
        if aa_err(alt.id) == aa2(alt.id):
            ok2 += 1
            if alt.id in aa_erroned:
                ok2_errors += 1

        if aa(alt.id) == aa2(alt.id):
            ok += 1
            if alt.id in aa_erroned:
                ok_errors += 1

    total = len(a)

    ca2 = ok2 / total
    ca2_errors = ok2_errors / total

    ca = ok / total
    ca_errors = ok_errors / total

    # Perform the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa = model.pessimist(pt_gen)
    aa2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa, aa2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%g" % (seed, na, nc, ncat, na_gen,
                    pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    aa.id = 'aa'
    aa_err.id = 'aa_err'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, model2, pt, pt_gen, aa, aa_err)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors

    # Output params
    t['obj'] = obj
    t['ca'] = ca
    t['ca_errors'] = ca_errors
    t['ca2'] = ca2
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['t_total'] = t3 - t1
    t['t_const'] = t2 - t1
    t['t_solve'] = t3 - t2

    return t
Esempio n. 2
0
def test_mip_mrsort_vc(seed, na, nc, ncat, na_gen, veto_param, pcerrors):

    # Generate a random ELECTRE TRI BM model
    if vetot == 'binary':
        model = generate_random_mrsort_model_with_binary_veto(nc, ncat,
                            seed,
                            veto_func = veto_func,
                            veto_param = veto_param)
    elif vetot == 'coalition':
        model = generate_random_mrsort_model_with_coalition_veto(nc, ncat,
                            seed,
                            veto_weights = indep_veto_weights,
                            veto_func = veto_func,
                            veto_param = veto_param)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)
    nv_m1_learning = sum([model.count_veto_pessimist(ap) for ap in pt])

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments_proba(aa_err,
                                                 model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Run the MIP
    t1 = time.time()

    model2 = MRSort(model.criteria, None, None, None,
                    model.categories_profiles, None, None, None)
    if algo == MipMRSortVC and vetot == 'binary':
        w = {c.id: 1 / len(model.criteria) for c in model.criteria}
        w1 = w.keys()[0]
        w[w1] += 1 - sum(w.values())
        model2.veto_weights = CriteriaValues([CriterionValue(c.id,
                                                             w[c.id])
                                              for c in model.criteria])
        model2.veto_lbda = min(w.values())

    if algo == MipMRSortVC:
        mip = MipMRSortVC(model2, pt, aa, indep_veto_weights)
    else:
        mip = MipMRSort(model2, pt, aa)

    mip.solve()

    t_total = time.time() - t1

    # Determine the number of erroned alternatives badly assigned
    aa2 = model2.pessimist(pt)
    nv_m2_learning = sum([model2.count_veto_pessimist(ap) for ap in pt])
    cmatrix_learning = compute_confusion_matrix(aa, aa2, model.categories)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    nv_m1_gen = sum([model.count_veto_pessimist(ap) for ap in pt_gen])
    nv_m2_gen = sum([model2.count_veto_pessimist(ap) for ap in pt_gen])
    if len(aa_gen) > 0:
        cmatrix_gen = compute_confusion_matrix(aa_gen, aa_gen2,
                                               model.categories)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%s-%d" % (seed, na, nc, ncat,
                    na_gen, veto_param, pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    a.id, pt.id = 'learning_set', 'learning_set'
    aa.id, aa2.id = 'learning_set_m1', 'learning_set_m2'
    a_gen.id, pt_gen.id = 'test_set', 'test_set'
    aa_gen.id, aa_gen2.id = 'test_set_m1', 'test_set_m2'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, model2, a, a_gen, pt, pt_gen, aa, aa2,
                  aa_gen, aa_gen2)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['veto_param'] = veto_param
    t['pcerrors'] = pcerrors

    # Ouput params
    t['na_err'] = na_err
    t['nv_m1_learning'] = nv_m1_learning
    t['nv_m2_learning'] = nv_m2_learning
    t['nv_m1_gen'] = nv_m1_gen
    t['nv_m2_gen'] = nv_m2_gen
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['t_total'] = t_total

    for k, v in cmatrix_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in cmatrix_gen.items():
        t['test_%s_%s' % (k[0], k[1])] = v

    return t
Esempio n. 3
0
def test_meta_electre_tri_global(seed, na, nc, ncat, na_gen, pcerrors):

    # Generate a random ELECTRE TRI BM model
    if random_model_type == 'default':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'choquet':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments_proba(aa_err,
                                                 model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Run the MIP
    t1 = time.time()

    model2 = MRSort(model.criteria, None, None, None,
                    model.categories_profiles, None, None, None)

    mip = MipMRSort(model2, pt, aa_err)
    obj = mip.solve()
    ca2_best = obj / na

    aa2 = model2.get_assignments(pt)

    t_total = time.time() - t1

    # Determine the number of erroned alternatives badly assigned
    aa2 = model2.pessimist(pt)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%g" % (seed, na, nc, ncat,
                    na_gen, pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    aa.id = 'aa'
    aa_err.id = 'aa_err'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, model2, pt, pt_gen, aa, aa_err)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors

    # Ouput params
    t['na_err'] = na_err
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca2_best'] = ca2_best
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['t_total'] = t_total

    return t
def run_test(seed, data, pclearning):
    random.seed(seed)

    # Separate learning data and test data
    pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    # Initialize ELECTRE-TRI BM model
    cat_profiles = generate_categories_profiles(data.cats)
    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)
    b = generate_alternatives(len(data.cats) - 1, 'b')
    bpt = None
    cvs = None
    lbda = None

    model = MRSort(data.c, cvs, bpt, lbda, cat_profiles)

    # Run the linear program
    t1 = time.time()

    mip = mip_mrsort(model, pt_learning, aa_learning)
    obj = mip.solve()

    t_total = time.time() - t1

    # CA learning set
    aa_learning2 = model.pessimist(pt_learning)
    ca_learning = compute_ca(aa_learning, aa_learning2)
    auc_learning = model.auc(aa_learning, pt_learning)
    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                             model.categories)

    # Compute CA of test setting
    if len(aa_test) > 0:
        aa_test2 = model.pessimist(pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        auc_test = model.auc(aa_test, pt_test)
        diff_test = compute_confusion_matrix(aa_test, aa_test2,
                                             model.categories)
    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in model.categories \
                                             for b in model.categories])

    # Compute CA of whole set
    aa2 = model.pessimist(data.pt)
    ca = compute_ca(data.aa, aa2)
    auc = model.auc(data.aa, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2, model.categories)

    t = test_result("%s-%d-%d" % (data.name, seed, pclearning))

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, aa_learning,
                  aa_test, pt_learning, pt_test)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['pclearning'] = pclearning
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['obj'] = obj
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
Esempio n. 5
0
def run_test(seed, data, pclearning):
    random.seed(seed)

    # Separate learning data and test data
    pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    # Initialize ELECTRE-TRI BM model
    cat_profiles = generate_categories_profiles(data.cats)
    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)
    b = generate_alternatives(len(data.cats) - 1, 'b')
    bpt = None
    cvs = None
    lbda = None

    model = MRSort(data.c, cvs, bpt, lbda, cat_profiles)

    # Run the linear program
    t1 = time.time()

    mip = mip_mrsort(model, pt_learning, aa_learning)
    obj = mip.solve()

    t_total = time.time() - t1

    # CA learning set
    aa_learning2 = model.pessimist(pt_learning)
    ca_learning = compute_ca(aa_learning, aa_learning2)
    auc_learning = model.auc(aa_learning, pt_learning)
    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                             model.categories)

    # Compute CA of test setting
    if len(aa_test) > 0:
        aa_test2 = model.pessimist(pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        auc_test = model.auc(aa_test, pt_test)
        diff_test = compute_confusion_matrix(aa_test, aa_test2,
                                           model.categories)
    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in model.categories \
                                             for b in model.categories])

    # Compute CA of whole set
    aa2 = model.pessimist(data.pt)
    ca = compute_ca(data.aa, aa2)
    auc = model.auc(data.aa, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2, model.categories)

    t = test_result("%s-%d-%d" % (data.name, seed, pclearning))

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, aa_learning, aa_test, pt_learning, pt_test)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['pclearning'] = pclearning
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['obj'] = obj
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
Esempio n. 6
0
def run_test(seed, data, pclearning, nloop, nmodels, nmeta):
    random.seed(seed)
    global aaa
    global allm
    global fct_ca
    global LOO

    # Separate learning data and test data
    if LOO:
        pt_learning, pt_test = data.pt.split_LOO(seed)
    else:
        pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    #import pdb; pdb.set_trace()

    # Initialize a random model
    cat_profiles = generate_categories_profiles(data.cats)
    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)
    b = generate_alternatives(len(data.cats) - 1, 'b')
    bpt = None
    cvs = None
    lbda = None

    model = MRSort(data.c, cvs, bpt, lbda, cat_profiles)
    # if LOO:
    #     print(data.c, cvs, bpt, lbda, cat_profiles)
    #     print(model.categories_profiles.to_categories())
    #     print(model.categories)        
    #     import pdb; pdb.set_trace()

    # Run the metaheuristic
    t1 = time.time()

    pt_sorted = SortedPerformanceTable(pt_learning)

    # Algorithm
    meta = meta_mrsort(nmodels, model.criteria,
                       model.categories_profiles.to_categories(),
                       pt_sorted, aa_learning,
                       seed = seed * 100)
    # if LOO:
    #     print(nmodels, model.criteria,
    #                    model.categories_profiles.to_categories(),
    #                    pt_sorted, aa_learning)
        #import pdb; pdb.set_trace()
#lp_weights = lp_weights,
#heur_profiles = heur_profiles,
#lp_veto_weights = lp_veto_weights,
#heur_veto_profiles = heur_veto_profiles,

    for i in range(0, nloop):
        model, ca_learning, all_models = meta.optimize(nmeta, fct_ca)
        #import pdb; pdb.set_trace()

        if ca_learning == 1:
            break

    t_total = time.time() - t1

    aa_learning2 = model.pessimist(pt_learning)
    
    ca_learning = compute_ca(aa_learning, aa_learning2)
    ca_learning_good = compute_ca_good(aa_learning, aa_learning2)
    #import pdb; pdb.set_trace()
    auc_learning = model.auc(aa_learning, pt_learning)

    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                           model.categories)

    # Compute CA of test setting
    
    if len(aa_test) > 0:
        aa_test2 = model.pessimist(pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        ca_test_good = compute_ca_good(aa_test, aa_test2)
        auc_test = model.auc(aa_test, pt_test)
        diff_test = compute_confusion_matrix(aa_test, aa_test2,
                                           model.categories)
        #import pdb; pdb.set_trace()

    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in model.categories \
                                             for b in model.categories])

    # Compute CA of whole set
    aa2 = model.pessimist(data.pt)
    ca = compute_ca(data.aa, aa2)
    ca_good = compute_ca_good(data.aa, aa2)
    auc = model.auc(data.aa, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2, model.categories)

    t = test_result("%s-%d-%d-%d-%d-%d" % (data.name, seed, nloop, nmodels,
                                           nmeta, pclearning))

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, aa_learning, aa_test, pt_learning, pt_test)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['pclearning'] = pclearning
    t['nloop'] = nloop
    t['nmodels'] = nmodels
    t['nmeta'] = nmeta
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca    
    t['ca_learning_good'] = ca_learning_good
    t['ca_test_good'] = ca_test_good
    t['ca_all_good'] = ca_good
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    # import pdb; pdb.set_trace()
    aaa[seed]=dict()
    aaa[seed]['id'] = seed
    aaa[seed]['learning_asgmt_id'] = [i.id for i in aa_learning]
    aaa[seed]['learning_asgmt'] = [i.category_id for i in aa_learning]
    aaa[seed]['learning_asgmt2'] = [i.category_id for i in aa_learning2]        
    aaa[seed]['test_asgmt_id'] = [i.id for i in aa_test]
    aaa[seed]['test_asgmt'] = [i.category_id for i in aa_test]
    aaa[seed]['test_asgmt2'] = [i.category_id for i in aa_test2]
    aaa[seed]['criteria'] =  [i for i,j in model.criteria.items()]
    aaa[seed]['criteria_weights'] = [str(i.value) for i in model.cv.values()]
    aaa[seed]['profiles_values'] = [str(model.bpt['b1'].performances[i]) for i,j in model.criteria.items()]
    aaa[seed]['lambda'] = model.lbda
    #[model.bpt['b1'].performances[i] for i,j in model.criteria.items()]


    allm[seed]=dict()
    allm[seed]['id'] = seed
    current_model = 0
    allm[seed]['mresults'] = dict()
    for all_model in list(all_models)[1:]:
        current_model += 1 # skipping the 1rst model already treated
        allm[seed]['mresults'][current_model] = ["",""]
        aa_learning2_allm = all_model.model.pessimist(pt_learning)
        ca_learning_allm = compute_ca(aa_learning, aa_learning2_allm)
        ca_learning_good_allm = compute_ca_good(aa_learning, aa_learning2_allm)
        auc_learning_allm = all_model.model.auc(aa_learning, pt_learning)
        # diff_learning_allm = compute_confusion_matrix(aa_learning, aa_learning2_allm,
        #                                        all_model.model.categories)
        # Compute CA of test setting
        if len(aa_test) > 0:
            aa_test2_allm = all_model.model.pessimist(pt_test)
            ca_test_allm = compute_ca(aa_test, aa_test2_allm)
            ca_test_good_allm = compute_ca_good(aa_test, aa_test2_allm)
            auc_test_allm = all_model.model.auc(aa_test, pt_test)
            # diff_test_allm = compute_confusion_matrix(aa_test, aa_test2_allm,
            #                                    all_model.categories)
        else:
            ca_test_allm = 0
            auc_test_allm = 0
            ncat_allm = len(data.cats)
            # diff_test_allm = OrderedDict([((a, b), 0) for a in all_model.categories \
            #                                      for b in all_model.model.categories])
        # Compute CA of whole set
        aa2_allm = all_model.model.pessimist(data.pt)
        ca_allm = compute_ca(data.aa, aa2_allm)
        ca_good_allm = compute_ca_good(data.aa, aa2_allm)
        auc_allm = all_model.model.auc(data.aa, data.pt)
        #diff_all_allm = compute_confusion_matrix(data.aa, aa2_allm, all_model.model.categories) 
        allm[seed]['mresults'][current_model][0] = 'na_learning,na_test,ca_learning,ca_test,ca_all,ca_learning_good,ca_test_good,ca_all_good,auc_learning,auc_test,auc_all'
        allm[seed]['mresults'][current_model][1] =  str(len(aa_learning)) + "," + str(len(aa_test)) + "," + str(ca_learning_allm) +  "," + str(ca_test_allm) +  "," + str(ca_allm) + "," + str(ca_learning_good_allm) + "," + str(ca_test_good_allm) + "," + str(ca_good_allm) +  "," + str(auc_learning_allm) + "," + str(auc_test_allm) +  "," + str(auc_allm)
        #allm[seed]['mresults'][current_model][1] =
        #all_model.model.bpt['b1'].performances
        #all_model.model.cv.values()
        #import pdb; pdb.set_trace()

        # allm[seed][current_model]['na_learning'] = len(aa_learning)
        # allm[seed][current_model]['na_test'] = len(na_test)
        # allm[seed][current_model]['ca_learning'] = ca_learning_allm
        # allm[seed][current_model]['ca_test'] = ca_test_allm
        # allm[seed][current_model]['ca_all'] = ca_allm     
        # allm[seed][current_model]['ca_learning_good'] = ca_learning_good_allm
        # allm[seed][current_model]['ca_test_good'] = ca_test_good_allm
        # allm[seed][current_model]['ca_all_good'] = ca_good_allm
        # allm[seed][current_model]['auc_learning'] = auc_learning_allm
        # allm[seed][current_model]['auc_test'] = auc_test_allm
        # allm[seed][current_model]['auc_all'] = auc_allm


    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
def test_lp_learning_weights(seed, na, nc, ncat, na_gen, pcerrors):
    # Generate an ELECTRE TRI model and assignment examples
    if random_model_type == 'default':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'choquet':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)

    model2 = model.copy()

    # Generate a first set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)

    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments(aa_err, model.categories,
                                           pcerrors / 100)

    # Run linear program
    t1 = time.time()
    if random_model_type == 'default':
        lp_weights = LpMRSortWeights(model2, pt, aa_err, 0.0001)
    else:
        lp_weights = LpMRSortMobius(model2, pt, aa_err, 0.0001)
    t2 = time.time()
    obj = lp_weights.solve()
    t3 = time.time()

    # Compute new assignment and classification accuracy
    aa2 = model2.pessimist(pt)
    ok = ok_errors = ok2 = ok2_errors = 0
    for alt in a:
        if aa_err(alt.id) == aa2(alt.id):
            ok2 += 1
            if alt.id in aa_erroned:
                ok2_errors += 1

        if aa(alt.id) == aa2(alt.id):
            ok += 1
            if alt.id in aa_erroned:
                ok_errors += 1

    total = len(a)

    ca2 = ok2 / total
    ca2_errors = ok2_errors / total

    ca = ok / total
    ca_errors = ok_errors / total

    # Perform the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa = model.pessimist(pt_gen)
    aa2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa, aa2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%g" %
                    (seed, na, nc, ncat, na_gen, pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    aa.id = 'aa'
    aa_err.id = 'aa_err'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, model2, pt,
                  pt_gen, aa, aa_err)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors

    # Output params
    t['obj'] = obj
    t['ca'] = ca
    t['ca_errors'] = ca_errors
    t['ca2'] = ca2
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['t_total'] = t3 - t1
    t['t_const'] = t2 - t1
    t['t_solve'] = t3 - t2

    return t
def test_meta_electre_tri_global(seed, na, nc, ncat, na_gen, pcerrors,
                                 max_oloops, nmodels, max_loops):

    # Generate a random ELECTRE TRI BM model
    if random_model_type == 'mrsort':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'ncs':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)
    elif random_model_type == 'mrsortcv':
        model = generate_random_mrsort_model_with_coalition_veto2(
            nc, ncat, seed)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    categories = model.categories_profiles.to_categories()
    aa_erroned = add_errors_in_assignments_proba(aa_err, model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Sort the performance table
    pt_sorted = SortedPerformanceTable(pt)

    meta = algo(nmodels, model.criteria, categories, pt_sorted, aa)
    metas_sorted = meta.sort_models()
    ca2_iter = [metas_sorted[0].ca] + [1] * (max_loops)

    t1 = time.time()

    for i in range(0, max_loops):
        model2, ca2_best = meta.optimize(max_oloops)
        ca2_iter[i + 1] = ca2_best
        if ca2_best == 1:
            break

    nloops = i + 1

    t_total = time.time() - t1

    aa2 = model2.pessimist(pt)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result(
        "%s-%d-%d-%d-%d-%g-%d-%d-%d" %
        (seed, na, nc, ncat, na_gen, pcerrors, max_loops, nmodels, max_oloops))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, model2, pt,
                  pt_gen)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors
    t['max_loops'] = max_loops
    t['nmodels'] = nmodels
    t['max_oloops'] = max_oloops

    # Ouput params
    t['na_err'] = na_err
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca2_best'] = ca2_best
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['nloops'] = nloops
    t['t_total'] = t_total

    t['ca2_iter'] = ca2_iter

    return t
Esempio n. 9
0
def run_test(seed, data, pclearning, nloop, nmodels, nmeta):
    random.seed(seed)

    # Separate learning data and test data
    pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    # Initialize a random model
    cat_profiles = generate_categories_profiles(data.cats)
    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)
    b = generate_alternatives(len(data.cats) - 1, 'b')
    bpt = None
    cvs = None
    lbda = None

    model = MRSort(data.c, cvs, bpt, lbda, cat_profiles)

    # Run the metaheuristic
    t1 = time.time()

    pt_sorted = SortedPerformanceTable(pt_learning)

    # Algorithm
    meta = MetaMRSortPop3(nmodels, model.criteria,
                          model.categories_profiles.to_categories(),
                          pt_sorted, aa_learning,
                          heur_init_profiles,
                          lp_weights,
                          heur_profiles)

    for i in range(0, nloop):
        model, ca_learning = meta.optimize(nmeta)

    t_total = time.time() - t1

    aa_learning2 = compute_assignments_majority(meta.models, pt_learning)
    ca_learning = compute_ca(aa_learning, aa_learning2)
    auc_learning = compute_auc_majority(meta.models, pt_learning)
    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                           model.categories)

    # Compute CA of test setting
    if len(aa_test) > 0:
        aa_test2 = compute_assignments_majority(meta.models, pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        auc_test = compute_auc_majority(meta.models, pt_test)
        diff_test = compute_confusion_matrix(aa_test, aa_test2,
                                           model.categories)

    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in model.categories \
                                             for b in model.categories])

    # Compute CA of whole set
    aa2 = compute_assignments_majority(meta.models, data.pt)
    ca = compute_ca(data.aa, aa2)
    auc = compute_auc_majority(meta.models, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2, model.categories)

    t = test_result("%s-%d-%d-%d-%d-%d" % (data.name, seed, nloop, nmodels,
                                           nmeta, pclearning))

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  aa_learning, aa_test, pt_learning, pt_test, *meta.models)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['pclearning'] = pclearning
    t['nloop'] = nloop
    t['nmodels'] = nmodels
    t['nmeta'] = nmeta
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
Esempio n. 10
0
def run_test(seed, data, pclearning, nseg):
    random.seed(seed)

    # Separate learning data and test data
    pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)

    # Run the linear program
    t1 = time.time()

    css = CriteriaValues([])
    for c in data.c:
        cs = CriterionValue(c.id, nseg)
        css.append(cs)

    lp = LpAVFSort(data.c, css, data.cats, worst, best)
    obj, cvs, cfs, catv = lp.solve(aa_learning, pt_learning)

    t_total = time.time() - t1

    model = AVFSort(data.c, cvs, cfs, catv)

    ordered_categories = model.categories

    # CA learning set
    aa_learning2 = model.get_assignments(pt_learning)
    ca_learning = compute_ca(aa_learning, aa_learning2)
    auc_learning = model.auc(aa_learning, pt_learning)
    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                             ordered_categories)

    # Compute CA of test setting
    if len(aa_test) > 0:
        aa_test2 = model.get_assignments(pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        auc_test = model.auc(aa_test, pt_test)
        diff_test = compute_confusion_matrix(aa_test,aa_test2,
                                           ordered_categories)
    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in ordered_categories \
                                             for b in ordered_categories])

    # Compute CA of whole set
    aa2 = model.get_assignments(data.pt)
    ca = compute_ca(data.aa, aa2)
    auc = model.auc(data.aa, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2,
                                        ordered_categories)

    t = test_result("%s-%d-%d-%d" % (data.name, seed, nseg, pclearning))
    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, aa_learning, aa_test, pt_learning, pt_test)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['ns'] = nseg
    t['pclearning'] = pclearning
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['obj'] = obj
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
def test_mip_mrsort_vc(seed, na, nc, ncat, na_gen, veto_param, pcerrors):

    # Generate a random ELECTRE TRI BM model
    if vetot == 'binary':
        model = generate_random_mrsort_model_with_binary_veto(
            nc, ncat, seed, veto_func=veto_func, veto_param=veto_param)
    elif vetot == 'coalition':
        model = generate_random_mrsort_model_with_coalition_veto(
            nc,
            ncat,
            seed,
            veto_weights=indep_veto_weights,
            veto_func=veto_func,
            veto_param=veto_param)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)
    nv_m1_learning = sum([model.count_veto_pessimist(ap) for ap in pt])

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments_proba(aa_err, model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Run the MIP
    t1 = time.time()

    model2 = MRSort(model.criteria, None, None, None,
                    model.categories_profiles, None, None, None)
    if algo == MipMRSortVC and vetot == 'binary':
        w = {c.id: 1 / len(model.criteria) for c in model.criteria}
        w1 = w.keys()[0]
        w[w1] += 1 - sum(w.values())
        model2.veto_weights = CriteriaValues(
            [CriterionValue(c.id, w[c.id]) for c in model.criteria])
        model2.veto_lbda = min(w.values())

    if algo == MipMRSortVC:
        mip = MipMRSortVC(model2, pt, aa, indep_veto_weights)
    else:
        mip = MipMRSort(model2, pt, aa)

    mip.solve()

    t_total = time.time() - t1

    # Determine the number of erroned alternatives badly assigned
    aa2 = model2.pessimist(pt)
    nv_m2_learning = sum([model2.count_veto_pessimist(ap) for ap in pt])
    cmatrix_learning = compute_confusion_matrix(aa, aa2, model.categories)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    nv_m1_gen = sum([model.count_veto_pessimist(ap) for ap in pt_gen])
    nv_m2_gen = sum([model2.count_veto_pessimist(ap) for ap in pt_gen])
    if len(aa_gen) > 0:
        cmatrix_gen = compute_confusion_matrix(aa_gen, aa_gen2,
                                               model.categories)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%s-%d" %
                    (seed, na, nc, ncat, na_gen, veto_param, pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    a.id, pt.id = 'learning_set', 'learning_set'
    aa.id, aa2.id = 'learning_set_m1', 'learning_set_m2'
    a_gen.id, pt_gen.id = 'test_set', 'test_set'
    aa_gen.id, aa_gen2.id = 'test_set_m1', 'test_set_m2'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, model2, a,
                  a_gen, pt, pt_gen, aa, aa2, aa_gen, aa_gen2)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['veto_param'] = veto_param
    t['pcerrors'] = pcerrors

    # Ouput params
    t['na_err'] = na_err
    t['nv_m1_learning'] = nv_m1_learning
    t['nv_m2_learning'] = nv_m2_learning
    t['nv_m1_gen'] = nv_m1_gen
    t['nv_m2_gen'] = nv_m2_gen
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['t_total'] = t_total

    for k, v in cmatrix_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in cmatrix_gen.items():
        t['test_%s_%s' % (k[0], k[1])] = v

    return t
Esempio n. 12
0
    print("LpAVFSortCompat")
    lp = LpAVFSortCompat(data.c, css, data.cats, worst, best)
    obj, cvs, cfs, catv = lp.solve(data.aa, data.pt)
    model = AVFSort(data.c, cvs, cfs, catv)
else:
    print("Invalid algorithm!")
    sys.exit(1)

t_total = time.time() - t1

model.id = 'learned'
data.pt.id = 'learning_set'
data.aa.id = 'learning_set'

dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_to_xmcda("%s/%s-all-%s-%s.bz2" % (DATADIR, algo, data.name, dt), data.aa,
              data.pt, model)

aa2 = model.get_assignments(data.pt)

ca = compute_ca(data.aa, aa2)
auc = model.auc(data.aa, data.pt)

anok = []
for a in data.a:
    if data.aa[a.id].category_id != aa2[a.id].category_id:
        anok.append(a)

if len(anok) > 0:
    print("Alternatives wrongly assigned:")
    print_pt_and_assignments(anok.keys(), data.c.keys(), [data.aa, aa2],
                             data.pt)
Esempio n. 13
0
    print("LpAVFSortCompat")
    lp = LpAVFSortCompat(data.c, css, data.cats, worst, best)
    obj, cvs, cfs, catv = lp.solve(data.aa, data.pt)
    model = AVFSort(data.c, cvs, cfs, catv)
else:
    print("Invalid algorithm!")
    sys.exit(1)

t_total = time.time() - t1

model.id = 'learned'
data.pt.id = 'learning_set'
data.aa.id = 'learning_set'

dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_to_xmcda("%s/%s-all-%s-%s.bz2" % (DATADIR, algo, data.name, dt),
              data.aa, data.pt, model)

aa2 = model.get_assignments(data.pt)

ca = compute_ca(data.aa, aa2)
auc = model.auc(data.aa, data.pt)

anok = []
for a in data.a:
    if data.aa[a.id].category_id != aa2[a.id].category_id:
        anok.append(a)

if len(anok) > 0:
    print("Alternatives wrongly assigned:")
    print_pt_and_assignments(anok.keys(), data.c.keys(), [data.aa, aa2], data.pt)
Esempio n. 14
0
#    # Remove alternatives that cannot be corrected with a veto rule
#    aa_learning_m2p = discard_undersorted_alternatives(m.categories,
#                                                      aa_learning,
#                                                      aa_learning_m2)
#    aa_learning_m2p = discard_alternatives_in_category(aa_learning_m2p,
#                                                      m.categories[0])

    # Run the metaheuristic
    meta = MetaMRSortVCPop3(10, m, SortedPerformanceTable(pt_learning),
                            aa_learning)
    nloops = 10
    nmeta = 20
    for i in range(nloops):
        m2, ca = meta.optimize(nmeta)

    ca_learning_m2 = compute_ca(aa_learning, aa_learning_m2)
    aa_learning_m3 = m2.pessimist(pt_learning)
    ca_learning_m3 = compute_ca(aa_learning, aa_learning_m3)

    if ca_learning_m2 >= ca_learning_m3:
        model = m
    else:
        model = m2

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, fname),
                  model, aa_learning, aa_test, pt_learning, pt_test)
Esempio n. 15
0
def run_test(seed, data, pclearning, nloop, nmodels, nmeta):
    random.seed(seed)

    # Separate learning data and test data
    pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning])
    aa_learning = data.aa.get_subset(pt_learning.keys())
    aa_test = data.aa.get_subset(pt_test.keys())

    # Initialize a random model
    cat_profiles = generate_categories_profiles(data.cats)
    worst = data.pt.get_worst(data.c)
    best = data.pt.get_best(data.c)
    b = generate_alternatives(len(data.cats) - 1, 'b')
    bpt = None
    cvs = None
    lbda = None

    model = MRSort(data.c, cvs, bpt, lbda, cat_profiles)

    # Run the metaheuristic
    t1 = time.time()

    pt_sorted = SortedPerformanceTable(pt_learning)

    # Algorithm
    meta = meta_mrsort(nmodels,
                       model.criteria,
                       model.categories_profiles.to_categories(),
                       pt_sorted,
                       aa_learning,
                       seed=seed * 100)
    #lp_weights = lp_weights,
    #heur_profiles = heur_profiles,
    #lp_veto_weights = lp_veto_weights,
    #heur_veto_profiles = heur_veto_profiles,

    for i in range(0, nloop):
        model, ca_learning = meta.optimize(nmeta)

        if ca_learning == 1:
            break

    t_total = time.time() - t1

    aa_learning2 = model.pessimist(pt_learning)
    ca_learning = compute_ca(aa_learning, aa_learning2)
    auc_learning = model.auc(aa_learning, pt_learning)
    diff_learning = compute_confusion_matrix(aa_learning, aa_learning2,
                                             model.categories)

    # Compute CA of test setting
    if len(aa_test) > 0:
        aa_test2 = model.pessimist(pt_test)
        ca_test = compute_ca(aa_test, aa_test2)
        auc_test = model.auc(aa_test, pt_test)
        diff_test = compute_confusion_matrix(aa_test, aa_test2,
                                             model.categories)

    else:
        ca_test = 0
        auc_test = 0
        ncat = len(data.cats)
        diff_test = OrderedDict([((a, b), 0) for a in model.categories \
                                             for b in model.categories])

    # Compute CA of whole set
    aa2 = model.pessimist(data.pt)
    ca = compute_ca(data.aa, aa2)
    auc = model.auc(data.aa, data.pt)
    diff_all = compute_confusion_matrix(data.aa, aa2, model.categories)

    t = test_result("%s-%d-%d-%d-%d-%d" %
                    (data.name, seed, nloop, nmodels, nmeta, pclearning))

    model.id = 'learned'
    aa_learning.id, aa_test.id = 'learning_set', 'test_set'
    pt_learning.id, pt_test.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, aa_learning,
                  aa_test, pt_learning, pt_test)

    t['seed'] = seed
    t['na'] = len(data.a)
    t['nc'] = len(data.c)
    t['ncat'] = len(data.cats)
    t['pclearning'] = pclearning
    t['nloop'] = nloop
    t['nmodels'] = nmodels
    t['nmeta'] = nmeta
    t['na_learning'] = len(aa_learning)
    t['na_test'] = len(aa_test)
    t['ca_learning'] = ca_learning
    t['ca_test'] = ca_test
    t['ca_all'] = ca
    t['auc_learning'] = auc_learning
    t['auc_test'] = auc_test
    t['auc_all'] = auc

    for k, v in diff_learning.items():
        t['learn_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_test.items():
        t['test_%s_%s' % (k[0], k[1])] = v
    for k, v in diff_all.items():
        t['all_%s_%s' % (k[0], k[1])] = v

    t['t_total'] = t_total

    return t
Esempio n. 16
0
def test_meta_electre_tri_global(seed, na, nc, ncat, na_gen, pcerrors):

    # Generate a random ELECTRE TRI BM model
    if random_model_type == 'default':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'choquet':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    aa_erroned = add_errors_in_assignments_proba(aa_err, model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Run the MIP
    t1 = time.time()

    model2 = MRSort(model.criteria, None, None, None,
                    model.categories_profiles, None, None, None)

    mip = MipMRSort(model2, pt, aa_err)
    obj = mip.solve()
    ca2_best = obj / na

    aa2 = model2.get_assignments(pt)

    t_total = time.time() - t1

    # Determine the number of erroned alternatives badly assigned
    aa2 = model2.pessimist(pt)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%g" %
                    (seed, na, nc, ncat, na_gen, pcerrors))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    aa.id = 'aa'
    aa_err.id = 'aa_err'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, model2, pt,
                  pt_gen, aa, aa_err)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors

    # Ouput params
    t['na_err'] = na_err
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca2_best'] = ca2_best
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['t_total'] = t_total

    return t
Esempio n. 17
0
def test_meta_electre_tri_global(seed, na, nc, ncat, na_gen, pcerrors,
                                 max_oloops, nmodels, max_loops):

    # Generate a random ELECTRE TRI BM model
    if random_model_type == 'mrsort':
        model = generate_random_mrsort_model(nc, ncat, seed)
    elif random_model_type == 'ncs':
        model = generate_random_mrsort_choquet_model(nc, ncat, 2, seed)
    elif random_model_type == 'mrsortcv':
        model = generate_random_mrsort_model_with_coalition_veto2(nc, ncat,
                                                                  seed)

    # Generate a set of alternatives
    a = generate_alternatives(na)
    pt = generate_random_performance_table(a, model.criteria)
    aa = model.pessimist(pt)

    # Add errors in assignment examples
    aa_err = aa.copy()
    categories = model.categories_profiles.to_categories()
    aa_erroned = add_errors_in_assignments_proba(aa_err,
                                                 model.categories,
                                                 pcerrors / 100)
    na_err = len(aa_erroned)

    # Sort the performance table
    pt_sorted = SortedPerformanceTable(pt)

    meta = algo(nmodels, model.criteria, categories, pt_sorted, aa)
    metas_sorted = meta.sort_models()
    ca2_iter = [metas_sorted[0].ca] + [1] * (max_loops)

    t1 = time.time()

    for i in range(0, max_loops):
        model2, ca2_best = meta.optimize(max_oloops)
        ca2_iter[i + 1] = ca2_best
        if ca2_best == 1:
            break

    nloops = i + 1

    t_total = time.time() - t1

    aa2 = model2.pessimist(pt)

    ok_errors = ok2_errors = ok = 0
    for alt in a:
        if aa(alt.id) == aa2(alt.id):
            if alt.id in aa_erroned:
                ok_errors += 1
            ok += 1

        if aa_err(alt.id) == aa2(alt.id) and alt.id in aa_erroned:
            ok2_errors += 1

    total = len(a)
    ca2_errors = ok2_errors / total
    ca_best = ok / total
    ca_errors = ok_errors / total

    # Generate alternatives for the generalization
    a_gen = generate_alternatives(na_gen)
    pt_gen = generate_random_performance_table(a_gen, model.criteria)
    aa_gen = model.pessimist(pt_gen)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen = compute_ca(aa_gen, aa_gen2)

    aa_gen_err = aa_gen.copy()
    aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err,
                                                     model.categories,
                                                     pcerrors / 100)
    aa_gen2 = model2.pessimist(pt_gen)
    ca_gen_err = compute_ca(aa_gen_err, aa_gen2)

    # Save all infos in test_result class
    t = test_result("%s-%d-%d-%d-%d-%g-%d-%d-%d" % (seed, na, nc, ncat,
                    na_gen, pcerrors, max_loops, nmodels, max_oloops))

    model.id = 'initial'
    model2.id = 'learned'
    pt.id, pt_gen.id = 'learning_set', 'test_set'
    save_to_xmcda("%s/%s.bz2" % (directory, t.test_name),
                  model, model2, pt, pt_gen)

    # Input params
    t['seed'] = seed
    t['na'] = na
    t['nc'] = nc
    t['ncat'] = ncat
    t['na_gen'] = na_gen
    t['pcerrors'] = pcerrors
    t['max_loops'] = max_loops
    t['nmodels'] = nmodels
    t['max_oloops'] = max_oloops

    # Ouput params
    t['na_err'] = na_err
    t['ca_best'] = ca_best
    t['ca_errors'] = ca_errors
    t['ca2_best'] = ca2_best
    t['ca2_errors'] = ca2_errors
    t['ca_gen'] = ca_gen
    t['ca_gen_err'] = ca_gen_err
    t['nloops'] = nloops
    t['t_total'] = t_total

    t['ca2_iter'] = ca2_iter

    return t