Esempio n. 1
0
    def test_point_to_plane_gradICP_transform1(self):
        device = torch.device("cuda")
        channels_first = False
        colors, depths, intrinsics, poses = load_test_data(channels_first,
                                                           batch_size=1)
        rgbdimages = RGBDImages(
            colors.to(device),
            depths.to(device),
            intrinsics.to(device),
            poses.to(device),
            channels_first=channels_first,
        )
        sigma = 0.6
        src_pointclouds = pointclouds_from_rgbdimages(rgbdimages[:,
                                                                 0]).to(device)
        rad = 0.2
        transform = torch.tensor(
            [
                [1.0, 0.0, 0.0, 0.05],
                [0.0, np.cos(rad), -np.sin(rad), 0.03],
                [0.0, np.sin(rad), np.cos(rad), 0.01],
                [0.0, 0.0, 0.0, 1.0],
            ],
            device=device,
            dtype=colors.dtype,
        )
        # transform = torch.tensor(
        #     [
        #         [np.cos(rad), -np.sin(rad), 0.0, 0.05],
        #         [np.sin(rad), np.cos(rad), 0.0, 0.03],
        #         [0.0, 0.0, 1.0, 0.01],
        #         [0.0, 0.0, 0.0, 1.0],
        #     ],
        #     device=device,
        #     dtype=colors.dtype,
        # )
        tgt_pointclouds = src_pointclouds.transform(transform)

        src_pc = src_pointclouds.points_padded
        tgt_pc = tgt_pointclouds.points_padded
        tgt_normals = tgt_pointclouds.normals_padded
        initial_transform = torch.eye(4, device=device)
        numiters = 100
        damp = 1e-8
        dist_thresh = None
        t, idx = point_to_plane_gradICP(
            src_pc,
            tgt_pc,
            tgt_normals,
            initial_transform,
            numiters,
            damp,
            dist_thresh,
        )

        assert t.shape == transform.shape
        assert_allclose(t, transform)
Esempio n. 2
0
    def test_gradICP_provide(self):
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        channels_first = False
        colors, depths, intrinsics, poses = load_test_data(channels_first,
                                                           batch_size=1)
        rgbdimages = RGBDImages(
            colors.to(device),
            depths.to(device),
            intrinsics.to(device),
            poses.to(device),
            channels_first=channels_first,
        )
        sigma = 0.6
        src_pointclouds = pointclouds_from_rgbdimages(rgbdimages[:,
                                                                 0]).to(device)
        rad = 0.1
        transform = torch.tensor(
            [
                [np.cos(rad), -np.sin(rad), 0.0, 0.05],
                [np.sin(rad), np.cos(rad), 0.0, 0.03],
                [0.0, 0.0, 1.0, 0.01],
                [0.0, 0.0, 0.0, 1.0],
            ],
            device=device,
            dtype=colors.dtype,
        )
        tgt_pointclouds = src_pointclouds.transform(transform)

        numiters = 30
        damp = 1e-8
        dist_thresh = 0.2
        lambda_max = 2.0
        B = 1.0
        B2 = 1.0
        nu = 200.0
        odom = GradICPOdometryProvider(
            numiters=numiters,
            damp=damp,
            dist_thresh=dist_thresh,
            lambda_max=lambda_max,
            B=B,
            B2=B2,
            nu=nu,
        )
        odom_transform = odom.provide(tgt_pointclouds, src_pointclouds)
        odom_transform = odom_transform.squeeze(1).squeeze(0)

        assert odom_transform.shape == transform.shape
        assert_allclose(odom_transform, transform)
Esempio n. 3
0
    def test_pointclouds_from_rgbdimages(self, channels_first, device):
        device = default_to_cpu_if_no_gpu(device)
        colors, depths, intrinsics, poses = load_test_data(channels_first)
        rgbdimages = RGBDImages(
            colors.to(device),
            depths.to(device),
            intrinsics.to(device),
            poses.to(device),
            channels_first=channels_first,
        )

        pointclouds = pointclouds_from_rgbdimages(rgbdimages[:, 0]).to(device)
        projected_pointclouds = pointclouds.pinhole_projection(
            intrinsics.to(device).squeeze(1))
        proj0 = projected_pointclouds.points_list[0][..., :-1]
        meshgrid = (create_meshgrid(rgbdimages.shape[2], rgbdimages.shape[3],
                                    False).to(device).squeeze(0))
        meshgrid = torch.cat(
            [
                meshgrid[..., 1:],
                meshgrid[..., 0:1],
            ],
            -1,
        )
        groundtruth = meshgrid[rgbdimages[0, 0].valid_depth_mask.squeeze()]

        assert_allclose(proj0.round().float(), groundtruth.float())

        # without filtering missing depths
        pointclouds2 = pointclouds_from_rgbdimages(
            rgbdimages[:, 0], filter_missing_depths=False).to(device)

        for b in range(len(pointclouds)):
            filtered_points = pointclouds.points_list[b]
            unfiltered_points = pointclouds2.points_list[b]
            m = 0
            for n in range(len(filtered_points)):
                while (not ((filtered_points[n] - unfiltered_points[m])**
                            2).sum() < 1e-12):
                    m += 1
                assert ((filtered_points[n] - unfiltered_points[m])**
                        2).sum() < 1e-12
                m += 1
Esempio n. 4
0
    def test_raises_errors(self, device):
        device = default_to_cpu_if_no_gpu(device)
        channels_first = False
        colors, depths, intrinsics, poses = load_test_data(channels_first)
        rgbdimages = RGBDImages(
            colors.to(device),
            depths.to(device),
            intrinsics.to(device),
            poses.to(device),
            channels_first=channels_first,
        )  # .to(device)

        sigma = 0.6
        with pytest.raises(
                TypeError,
                match="Expected rgbdimages to be of type gradslam.RGBDImages"):
            pointclouds = pointclouds_from_rgbdimages(depths).to(device)

        with pytest.raises(
                ValueError,
                match="Expected rgbdimages to have sequence length of 1"):
            pointclouds = pointclouds_from_rgbdimages(rgbdimages).to(device)
Esempio n. 5
0
 def init_rgbdimages(
     use_poses=True,
     channels_first=False,
     device: str = "cpu",
 ):
     device = torch.device(device)
     colors, depths, intrinsics, poses = load_test_data(channels_first)
     if use_poses:
         rgbdimages = RGBDImages(
             colors.to(device),
             depths.to(device),
             intrinsics.to(device),
             poses.to(device),
             channels_first=channels_first,
         )
     else:
         rgbdimages = RGBDImages(
             colors.to(device),
             depths.to(device),
             intrinsics.to(device),
             channels_first=channels_first,
         )
     return rgbdimages, colors, depths, intrinsics, poses