Esempio n. 1
0
    def _verify_loss_map(self, path, expected_data):
        namespaces = dict(nrml=xml.NRML_NS, gml=xml.GML_NS)
        root = etree.parse(path)

        actual_lm_data = []
        lm_nodes = root.xpath('.//nrml:LMNode', namespaces=namespaces)

        # sanity check: there should be only 3 loss map nodes:
        self.assertEqual(3, len(lm_nodes))

        for node in lm_nodes:
            node_data = dict()

            [pos] = node.xpath('.//gml:pos', namespaces=namespaces)
            node_data['pos'] = pos.text

            [loss] = node.xpath('./nrml:loss', namespaces=namespaces)
            node_data['asset'] = loss.get('assetRef')

            [mean] = loss.xpath('./nrml:mean', namespaces=namespaces)
            [stddev] = loss.xpath('./nrml:stdDev', namespaces=namespaces)
            node_data['mean'] = float(mean.text)
            node_data['stddev'] = float(stddev.text)

            actual_lm_data.append(node_data)

        helpers.assertDeepAlmostEqual(self,
                                      sorted(expected_data),
                                      sorted(actual_lm_data),
                                      places=self.LOSSMAP_PRECISION)
Esempio n. 2
0
    def test_bug_932765(self):
        # Test to directly address this bug:
        # https://bugs.launchpad.net/openquake/+bug/932765

        # To make this test work, we basically have to define a list of epsilon
        # limits which has a different length from all of the others.
        eps_limits = [-0.5, +0.5, +1.5]
        subset_name = 'MagDistEpsPMF'
        file_name = '%s.dat' % subset_name

        target_path = os.path.join(self.tempdir,
                                   '%s_932765.hdf5' % subset_name)

        # load in the test data
        data = self.read_data_file(
            file_name, [self.NMAG - 1, self.NDIST - 1, self.NEPS - 1])
        # chop the test data to match what we expected with the shortened
        # epsilon limits we've defined (see above)
        expected_data = data[:, :, 0:2]

        disagg_subsets.extract_subsets(666, self.SITE, self.full_matrix_path,
                                       self.LATITUDE_BIN_LIMITS,
                                       self.LONGITUDE_BIN_LIMITS,
                                       self.MAGNITUDE_BIN_LIMITS, eps_limits,
                                       self.DISTANCE_BIN_LIMITS, target_path,
                                       [subset_name])
        actual = h5py.File(target_path, 'r')[subset_name].value

        helpers.assertDeepAlmostEqual(self, expected_data, actual)
Esempio n. 3
0
 def _test_pmf(self, name, result_shape):
     target_path = os.path.join(self.tempdir, '%s.hdf5' % name)
     disagg_subsets.extract_subsets(
         111, self.SITE, self.full_matrix_path, self.LATITUDE_BIN_LIMITS,
         self.LONGITUDE_BIN_LIMITS, self.MAGNITUDE_BIN_LIMITS,
         self.EPSILON_BIN_LIMITS, self.DISTANCE_BIN_LIMITS, target_path,
         [name])
     expected_result = self.read_data_file('%s.dat' % name, result_shape)
     result = h5py.File(target_path, 'r')[name].value
     helpers.assertDeepAlmostEqual(self, expected_result, result)
Esempio n. 4
0
    def test_compute_beta_dist(self):

        # expected beta distributions provided by Vitor
        expected_beta_distributions = [
            [1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000],
            [0.9895151, 0.9999409, 1.0000000, 1.0000000, 1.0000000],
            [0.9175720, 0.9981966, 0.9999997, 1.0000000, 1.0000000],
            [0.7764311, 0.9887521, 0.9999922, 1.0000000, 1.0000000],
            [0.6033381, 0.9633258, 0.9999305, 1.0000000, 1.0000000],
            [0.4364471, 0.9160514, 0.9996459, 1.0000000, 1.0000000],
            [0.2975979, 0.8460938, 0.9987356, 1.0000000, 1.0000000],
            [0.1931667, 0.7574557, 0.9964704, 1.0000000, 1.0000000],
            [0.1202530, 0.6571491, 0.9917729, 0.9999999, 1.0000000],
            [0.0722091, 0.5530379, 0.9832939, 0.9999997, 1.0000000],
            [0.0420056, 0.4521525, 0.9695756, 0.9999988, 1.0000000],
            [0.0130890, 0.2790107, 0.9213254, 0.9999887, 1.0000000],
            [0.0037081, 0.1564388, 0.8409617, 0.9999306, 1.0000000],
            [0.0009665, 0.0805799, 0.7311262, 0.9996882, 1.0000000],
            [0.0002335, 0.0384571, 0.6024948, 0.9988955, 1.0000000],
            [0.0000526, 0.0171150, 0.4696314, 0.9967629, 1.0000000],
            [0.0000022, 0.0027969, 0.2413923, 0.9820831, 1.0000000],
            [0.0000001, 0.0003598, 0.0998227, 0.9364072, 1.0000000],
            [0.0000000, 0.0000367, 0.0334502, 0.8381920, 0.9999995],
            [0.0000000, 0.0000030, 0.0091150, 0.6821293, 0.9999959],
            [0.0000000, 0.0000002, 0.0020162, 0.4909782, 0.9999755],
            [0.0000000, 0.0000000, 0.0000509, 0.1617086, 0.9995033],
            [0.0000000, 0.0000000, 0.0000005, 0.0256980, 0.9945488],
            [0.0000000, 0.0000000, 0.0000000, 0.0016231, 0.9633558],
            [0.0000000, 0.0000000, 0.0000000, 0.0000288, 0.8399534],
            [0.0000000, 0.0000000, 0.0000000, 0.0000001, 0.5409583],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.3413124],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.1589844],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0421052],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0027925],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000]
        ]

        vuln_function = shapes.VulnerabilityFunction(self.imls,
                                                     self.mean_loss_ratios,
                                                     self.covs)

        # steps = 5
        loss_ratios = _generate_loss_ratios(vuln_function, 5)

        lrem = numpy.empty((len(loss_ratios), vuln_function.imls.size), float)

        for col, _ in enumerate(vuln_function):
            for row, loss_ratio in enumerate(loss_ratios):
                lrem[row][col] = BetaDistribution.survival_function(
                    loss_ratio, col=col, vf=vuln_function)

        helpers.assertDeepAlmostEqual(self,
                                      expected_beta_distributions,
                                      lrem,
                                      delta=0.0005)
 def _test_pmf(self, name, result_shape):
     target_path = os.path.join(self.tempdir, '%s.hdf5' % name)
     disagg_subsets.extract_subsets(
         111, self.SITE, self.full_matrix_path,
         self.LATITUDE_BIN_LIMITS, self.LONGITUDE_BIN_LIMITS,
         self.MAGNITUDE_BIN_LIMITS, self.EPSILON_BIN_LIMITS,
         self.DISTANCE_BIN_LIMITS,
         target_path, [name]
     )
     expected_result = self.read_data_file('%s.dat' % name, result_shape)
     result = h5py.File(target_path, 'r')[name].value
     helpers.assertDeepAlmostEqual(self, expected_result, result)
    def test_compute_bcr_in_the_classical_psha_calculator(self):
        self._compute_risk_classical_psha_setup()
        helpers.delete_profile(self.job)
        bcr_config = helpers.demo_file('benefit_cost_ratio/config.gem')
        job_profile, params, sections = engine.import_job_profile(
            bcr_config, self.job)

        # We need to adjust a few of the parameters for this test:
        job_profile.imls = [
            0.005, 0.007, 0.0098, 0.0137, 0.0192, 0.0269, 0.0376, 0.0527,
            0.0738, 0.103, 0.145, 0.203, 0.284, 0.397, 0.556, 0.778]
        params['ASSET_LIFE_EXPECTANCY'] = '50'
        job_profile.asset_life_expectancy = 50
        params['REGION_VERTEX'] = '0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0'
        job_profile.region = GEOSGeometry(shapes.polygon_ewkt_from_coords(
            params['REGION_VERTEX']))
        job_profile.save()

        job_ctxt = engine.JobContext(
            params, self.job_id, sections=sections, oq_job_profile=job_profile)

        calculator = classical_core.ClassicalRiskCalculator(job_ctxt)

        [input] = models.inputs4job(self.job.id, input_type="exposure")
        emdl = input.model()
        if not emdl:
            emdl = models.ExposureModel(
                owner=self.job.owner, input=input,
                description="c-psha test exposure model",
                category="c-psha power plants", stco_unit="watt",
                stco_type="aggregated", reco_unit="joule",
                reco_type="aggregated")
            emdl.save()

        assets = emdl.exposuredata_set.filter(asset_ref="rubcr")
        if not assets:
            asset = models.ExposureData(exposure_model=emdl, taxonomy="ID",
                                        asset_ref="rubcr", stco=1, reco=123.45,
                                        site=GEOSGeometry("POINT(1.0 1.0)"))
            asset.save()

        Block.from_kvs(self.job_id, self.block_id)
        calculator.compute_risk(self.block_id)

        result_key = kvs.tokens.bcr_block_key(self.job_id, self.block_id)
        res = kvs.get_value_json_decoded(result_key)
        expected_result = {'bcr': 0.0, 'eal_original': 0.003032,
                           'eal_retrofitted': 0.003032}

        helpers.assertDeepAlmostEqual(
            self, res, [[[1, 1], [[expected_result, "rubcr"]]]])
Esempio n. 7
0
    def test_compute_beta_dist(self):

        # expected beta distributions provided by Vitor
        expected_beta_distributions = [
            [1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000],
            [0.9895151, 0.9999409, 1.0000000, 1.0000000, 1.0000000],
            [0.9175720, 0.9981966, 0.9999997, 1.0000000, 1.0000000],
            [0.7764311, 0.9887521, 0.9999922, 1.0000000, 1.0000000],
            [0.6033381, 0.9633258, 0.9999305, 1.0000000, 1.0000000],
            [0.4364471, 0.9160514, 0.9996459, 1.0000000, 1.0000000],
            [0.2975979, 0.8460938, 0.9987356, 1.0000000, 1.0000000],
            [0.1931667, 0.7574557, 0.9964704, 1.0000000, 1.0000000],
            [0.1202530, 0.6571491, 0.9917729, 0.9999999, 1.0000000],
            [0.0722091, 0.5530379, 0.9832939, 0.9999997, 1.0000000],
            [0.0420056, 0.4521525, 0.9695756, 0.9999988, 1.0000000],
            [0.0130890, 0.2790107, 0.9213254, 0.9999887, 1.0000000],
            [0.0037081, 0.1564388, 0.8409617, 0.9999306, 1.0000000],
            [0.0009665, 0.0805799, 0.7311262, 0.9996882, 1.0000000],
            [0.0002335, 0.0384571, 0.6024948, 0.9988955, 1.0000000],
            [0.0000526, 0.0171150, 0.4696314, 0.9967629, 1.0000000],
            [0.0000022, 0.0027969, 0.2413923, 0.9820831, 1.0000000],
            [0.0000001, 0.0003598, 0.0998227, 0.9364072, 1.0000000],
            [0.0000000, 0.0000367, 0.0334502, 0.8381920, 0.9999995],
            [0.0000000, 0.0000030, 0.0091150, 0.6821293, 0.9999959],
            [0.0000000, 0.0000002, 0.0020162, 0.4909782, 0.9999755],
            [0.0000000, 0.0000000, 0.0000509, 0.1617086, 0.9995033],
            [0.0000000, 0.0000000, 0.0000005, 0.0256980, 0.9945488],
            [0.0000000, 0.0000000, 0.0000000, 0.0016231, 0.9633558],
            [0.0000000, 0.0000000, 0.0000000, 0.0000288, 0.8399534],
            [0.0000000, 0.0000000, 0.0000000, 0.0000001, 0.5409583],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.3413124],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.1589844],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0421052],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0027925],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000]]

        vuln_function = shapes.VulnerabilityFunction(self.imls,
                            self.mean_loss_ratios, self.covs)

        # steps = 5
        loss_ratios = _generate_loss_ratios(vuln_function, 5)

        lrem = numpy.empty((len(loss_ratios), vuln_function.imls.size), float)

        for col, _ in enumerate(vuln_function):
            for row, loss_ratio in enumerate(loss_ratios):
                lrem[row][col] = BetaDistribution.survival_function(loss_ratio,
                    col=col, vf=vuln_function)

        helpers.assertDeepAlmostEqual(self, expected_beta_distributions,
                                      lrem, delta=0.0005)
    def test_compute_bcr(self):
        cfg_path = helpers.demo_file(
            'probabilistic_event_based_risk/config.gem')
        helpers.delete_profile(self.job)
        job_profile, params, sections = engine.import_job_profile(
            cfg_path, self.job)
        job_profile.calc_mode = 'event_based_bcr'
        job_profile.interest_rate = 0.05
        job_profile.asset_life_expectancy = 50
        job_profile.region = GEOSGeometry(shapes.polygon_ewkt_from_coords(
            '0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0'))
        job_profile.region_grid_spacing = 0.1
        job_profile.maximum_distance = 200.0
        job_profile.gmf_random_seed = None
        job_profile.save()

        params.update(dict(CALCULATION_MODE='Event Based BCR',
                           INTEREST_RATE='0.05',
                           ASSET_LIFE_EXPECTANCY='50',
                           MAXIMUM_DISTANCE='200.0',
                           REGION_VERTEX=('0.0, 0.0, 0.0, 2.0, '
                                          '2.0, 2.0, 2.0, 0.0'),
                           REGION_GRID_SPACING='0.1'))

        job_ctxt = engine.JobContext(
            params, self.job_id, sections=sections, oq_job_profile=job_profile)

        calculator = eb_core.EventBasedRiskCalculator(job_ctxt)

        self.block_id = 7
        SITE = shapes.Site(1.0, 1.0)
        block = Block(self.job_id, self.block_id, (SITE, ))
        block.to_kvs()

        location = GEOSGeometry(SITE.point.to_wkt())
        asset = models.ExposureData(exposure_model=self.emdl, taxonomy="ID",
                                    asset_ref=22.61, stco=1, reco=123.45,
                                    site=location)
        asset.save()

        calculator.compute_risk(self.block_id)

        result_key = kvs.tokens.bcr_block_key(self.job_id, self.block_id)
        result = kvs.get_value_json_decoded(result_key)
        expected_result = {'bcr': 0.0, 'eal_original': 0.0,
                           'eal_retrofitted': 0.0}
        helpers.assertDeepAlmostEqual(
            self, [[[1, 1], [[expected_result, "22.61"]]]], result)
Esempio n. 9
0
    def test_compute_lrem_using_beta_distribution(self):
        # expected lrem provided by Vitor

        expected_beta_distributions = [
            [1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000],
            [0.9895151, 0.9999409, 1.0000000, 1.0000000, 1.0000000],
            [0.9175720, 0.9981966, 0.9999997, 1.0000000, 1.0000000],
            [0.7764311, 0.9887521, 0.9999922, 1.0000000, 1.0000000],
            [0.6033381, 0.9633258, 0.9999305, 1.0000000, 1.0000000],
            [0.4364471, 0.9160514, 0.9996459, 1.0000000, 1.0000000],
            [0.2975979, 0.8460938, 0.9987356, 1.0000000, 1.0000000],
            [0.1931667, 0.7574557, 0.9964704, 1.0000000, 1.0000000],
            [0.1202530, 0.6571491, 0.9917729, 0.9999999, 1.0000000],
            [0.0722091, 0.5530379, 0.9832939, 0.9999997, 1.0000000],
            [0.0420056, 0.4521525, 0.9695756, 0.9999988, 1.0000000],
            [0.0130890, 0.2790107, 0.9213254, 0.9999887, 1.0000000],
            [0.0037081, 0.1564388, 0.8409617, 0.9999306, 1.0000000],
            [0.0009665, 0.0805799, 0.7311262, 0.9996882, 1.0000000],
            [0.0002335, 0.0384571, 0.6024948, 0.9988955, 1.0000000],
            [0.0000526, 0.0171150, 0.4696314, 0.9967629, 1.0000000],
            [0.0000022, 0.0027969, 0.2413923, 0.9820831, 1.0000000],
            [0.0000001, 0.0003598, 0.0998227, 0.9364072, 1.0000000],
            [0.0000000, 0.0000367, 0.0334502, 0.8381920, 0.9999995],
            [0.0000000, 0.0000030, 0.0091150, 0.6821293, 0.9999959],
            [0.0000000, 0.0000002, 0.0020162, 0.4909782, 0.9999755],
            [0.0000000, 0.0000000, 0.0000509, 0.1617086, 0.9995033],
            [0.0000000, 0.0000000, 0.0000005, 0.0256980, 0.9945488],
            [0.0000000, 0.0000000, 0.0000000, 0.0016231, 0.9633558],
            [0.0000000, 0.0000000, 0.0000000, 0.0000288, 0.8399534],
            [0.0000000, 0.0000000, 0.0000000, 0.0000001, 0.5409583],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.3413124],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.1589844],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0421052],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0027925],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000]
        ]

        vuln_function = shapes.VulnerabilityFunction(self.imls,
                                                     self.mean_loss_ratios,
                                                     self.covs, "BT")

        lrem = _compute_lrem(vuln_function, 5)

        helpers.assertDeepAlmostEqual(self,
                                      expected_beta_distributions,
                                      lrem,
                                      delta=0.0005)
Esempio n. 10
0
    def test_compute_lrem_using_beta_distribution(self):
        # expected lrem provided by Vitor

        expected_beta_distributions = [
            [1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000],
            [0.9895151, 0.9999409, 1.0000000, 1.0000000, 1.0000000],
            [0.9175720, 0.9981966, 0.9999997, 1.0000000, 1.0000000],
            [0.7764311, 0.9887521, 0.9999922, 1.0000000, 1.0000000],
            [0.6033381, 0.9633258, 0.9999305, 1.0000000, 1.0000000],
            [0.4364471, 0.9160514, 0.9996459, 1.0000000, 1.0000000],
            [0.2975979, 0.8460938, 0.9987356, 1.0000000, 1.0000000],
            [0.1931667, 0.7574557, 0.9964704, 1.0000000, 1.0000000],
            [0.1202530, 0.6571491, 0.9917729, 0.9999999, 1.0000000],
            [0.0722091, 0.5530379, 0.9832939, 0.9999997, 1.0000000],
            [0.0420056, 0.4521525, 0.9695756, 0.9999988, 1.0000000],
            [0.0130890, 0.2790107, 0.9213254, 0.9999887, 1.0000000],
            [0.0037081, 0.1564388, 0.8409617, 0.9999306, 1.0000000],
            [0.0009665, 0.0805799, 0.7311262, 0.9996882, 1.0000000],
            [0.0002335, 0.0384571, 0.6024948, 0.9988955, 1.0000000],
            [0.0000526, 0.0171150, 0.4696314, 0.9967629, 1.0000000],
            [0.0000022, 0.0027969, 0.2413923, 0.9820831, 1.0000000],
            [0.0000001, 0.0003598, 0.0998227, 0.9364072, 1.0000000],
            [0.0000000, 0.0000367, 0.0334502, 0.8381920, 0.9999995],
            [0.0000000, 0.0000030, 0.0091150, 0.6821293, 0.9999959],
            [0.0000000, 0.0000002, 0.0020162, 0.4909782, 0.9999755],
            [0.0000000, 0.0000000, 0.0000509, 0.1617086, 0.9995033],
            [0.0000000, 0.0000000, 0.0000005, 0.0256980, 0.9945488],
            [0.0000000, 0.0000000, 0.0000000, 0.0016231, 0.9633558],
            [0.0000000, 0.0000000, 0.0000000, 0.0000288, 0.8399534],
            [0.0000000, 0.0000000, 0.0000000, 0.0000001, 0.5409583],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.3413124],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.1589844],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0421052],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0027925],
            [0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000]]

        vuln_function = shapes.VulnerabilityFunction(
            self.imls, self.mean_loss_ratios, self.covs, "BT")

        lrem = _compute_lrem(vuln_function, 5)

        helpers.assertDeepAlmostEqual(
            self, expected_beta_distributions, lrem, delta=0.0005)
Esempio n. 11
0
 def test_multiple_matrices(self):
     target_path = os.path.join(self.tempdir, 'multiple.hdf5')
     pmfs = {
         'MagDistEpsPMF': ('MagDistEpsPMF.dat',
                           [self.NMAG - 1, self.NDIST - 1, self.NEPS - 1]),
         'LatLonPMF': ('LatLonPMF.dat', [self.NLAT - 1, self.NLON - 1]),
         FULL_DISAGG_MATRIX: (self.FULL_MATRIX_DATA, self.FULL_MATRIX_SHAPE)
     }
     disagg_subsets.extract_subsets(112, self.SITE, self.full_matrix_path,
                                    self.LATITUDE_BIN_LIMITS,
                                    self.LONGITUDE_BIN_LIMITS,
                                    self.MAGNITUDE_BIN_LIMITS,
                                    self.EPSILON_BIN_LIMITS,
                                    self.DISTANCE_BIN_LIMITS, target_path,
                                    pmfs.keys())
     result = h5py.File(target_path, 'r')
     for name, (datafile, shape) in pmfs.items():
         expected_result = self.read_data_file(datafile, shape)
         helpers.assertDeepAlmostEqual(self, expected_result, result[name])
Esempio n. 12
0
 def test_multiple_matrices(self):
     target_path = os.path.join(self.tempdir, 'multiple.hdf5')
     pmfs = {
         'MagDistEpsPMF': ('MagDistEpsPMF.dat',
                           [self.NMAG - 1, self.NDIST - 1, self.NEPS - 1]),
         'LatLonPMF': ('LatLonPMF.dat',
                       [self.NLAT - 1, self.NLON - 1]),
         disagg.FULL_DISAGG_MATRIX: (self.FULL_MATRIX_DATA,
                                              self.FULL_MATRIX_SHAPE)
     }
     disagg_subsets.extract_subsets(
         112, self.SITE, self.full_matrix_path,
         self.LATITUDE_BIN_LIMITS, self.LONGITUDE_BIN_LIMITS,
         self.MAGNITUDE_BIN_LIMITS, self.EPSILON_BIN_LIMITS,
         self.DISTANCE_BIN_LIMITS,
         target_path,
         pmfs.keys()
     )
     result = h5py.File(target_path, 'r')
     for name, (datafile, shape) in pmfs.items():
         expected_result = self.read_data_file(datafile, shape)
         helpers.assertDeepAlmostEqual(self, expected_result, result[name])
Esempio n. 13
0
    def test_write_uhs_data(self):
        # Test object type to use instead of `UhSpectrumData`;
        # this is a little more light-weight

        # First, set up all the test data:
        Data = namedtuple('Data', 'realization, sa_values, location')

        points = [
            Point(0.0, 0.0),
            Point(1.0, 0.0),
            Point(0.0, 1.0),
            Point(1.0, 1.0),
        ]

        # A single 2D matrix for each location/point
        sa_test_values = [
            # each row repsents a realization,
            # while the contents of each row is an array of SA values
            [[1.0, 2.0, 3.0, 4.0],
             [5.0, 6.0, 7.0, 8.0],
             [9.0, 10.0, 11.0, 12.0]],

            [[13.0, 14.0, 15.0, 16.0],
             [17.0, 18.0, 19.0, 20.0],
             [21.0, 22.0, 23.0, 24.0]],

            [[25.0, 26.0, 27.0, 28.0],
             [29.0, 30.0, 31.0, 32.0],
             [33.0, 34.0, 35.0, 36.0]],

            [[37.0, 38.0, 39.0, 40.0],
             [41.0, 42.0, 43.0, 44.0],
             [45.0, 46.0, 47.0, 48.0]],
        ]

        uhs_data = []
        for i, pt in enumerate(points):
            for j, sa_values in enumerate(sa_test_values[i]):
                uhs_data.append(Data(j, sa_values, pt))

        # Done setting up the test data.

        # Now, create the empty file:
        target_dir = tempfile.mkdtemp()

        try:

            poe = 0.05
            n_rlz = 3  # rows
            n_periods = 4  # columns
            ds_names = [uhs_export._point_to_ds_name(p) for p in points]

            # As a robustness test, reverse the order of the ds_names.
            # It should not matter when we're creating the file (since the
            # structure of the file is basically a dict of 2D matrices).
            the_file = uhs_export.touch_result_hdf5_file(
                target_dir, poe, ds_names[::-1], n_rlz, n_periods)

            # Finally, call the function under test with our list of fake
            # `UhSpectrumData` objects.
            uhs_export.write_uhs_data(the_file, uhs_data)

            # Now read the file and check the contents:
            with h5py.File(the_file, 'r') as h5_file:
                for i, ds in enumerate(ds_names):
                    helpers.assertDeepAlmostEqual(
                        self, sa_test_values[i], h5_file[ds].value)
        finally:
            shutil.rmtree(target_dir)
Esempio n. 14
0
    def test_write_uhs_data(self):
        # Test object type to use instead of `UhSpectrumData`;
        # this is a little more light-weight

        # First, set up all the test data:
        Data = namedtuple('Data', 'realization, sa_values, location')

        points = [
            Point(0.0, 0.0),
            Point(1.0, 0.0),
            Point(0.0, 1.0),
            Point(1.0, 1.0),
        ]

        # A single 2D matrix for each location/point
        sa_test_values = [
            # each row repsents a realization,
            # while the contents of each row is an array of SA values
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
             [9.0, 10.0, 11.0, 12.0]],
            [[13.0, 14.0, 15.0, 16.0], [17.0, 18.0, 19.0, 20.0],
             [21.0, 22.0, 23.0, 24.0]],
            [[25.0, 26.0, 27.0, 28.0], [29.0, 30.0, 31.0, 32.0],
             [33.0, 34.0, 35.0, 36.0]],
            [[37.0, 38.0, 39.0, 40.0], [41.0, 42.0, 43.0, 44.0],
             [45.0, 46.0, 47.0, 48.0]],
        ]

        uhs_data = []
        for i, pt in enumerate(points):
            for j, sa_values in enumerate(sa_test_values[i]):
                uhs_data.append(Data(j, sa_values, pt))

        # Done setting up the test data.

        # Now, create the empty file:
        target_dir = tempfile.mkdtemp()

        try:

            poe = 0.05
            n_rlz = 3  # rows
            n_periods = 4  # columns
            ds_names = [uhs_export._point_to_ds_name(p) for p in points]

            # As a robustness test, reverse the order of the ds_names.
            # It should not matter when we're creating the file (since the
            # structure of the file is basically a dict of 2D matrices).
            the_file = uhs_export.touch_result_hdf5_file(
                target_dir, poe, ds_names[::-1], n_rlz, n_periods)

            # Finally, call the function under test with our list of fake
            # `UhSpectrumData` objects.
            uhs_export.write_uhs_data(the_file, uhs_data)

            # Now read the file and check the contents:
            with h5py.File(the_file, 'r') as h5_file:
                for i, ds in enumerate(ds_names):
                    helpers.assertDeepAlmostEqual(self, sa_test_values[i],
                                                  h5_file[ds].value)
        finally:
            shutil.rmtree(target_dir)