def test_train_valid_test_split(fn): columns = ['test column 1', 'test column 2', 'test column 3'] dates = generate_random_dates(10) assets = get_assets(3) index = pd.MultiIndex.from_product([dates, assets]) values = np.arange(len(index) * len(columns)).reshape( [len(columns), len(index)]).T targets = np.arange(len(index)) fn_inputs = { 'all_x': pd.DataFrame(values, index, columns), 'all_y': pd.Series(targets, index, name='target'), 'train_size': 0.6, 'valid_size': 0.2, 'test_size': 0.2 } fn_correct_outputs = OrderedDict([ ('X_train', pd.DataFrame(values[:18], index[:18], columns=columns)), ('X_valid', pd.DataFrame(values[18:24], index[18:24], columns=columns)), ('X_test', pd.DataFrame(values[24:], index[24:], columns=columns)), ('y_train', pd.Series(targets[:18], index[:18])), ('y_valid', pd.Series(targets[18:24], index[18:24])), ('y_test', pd.Series(targets[24:], index[24:])) ]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_non_overlapping_samples(fn): columns = ['test column 1', 'test column 2'] dates = generate_random_dates(8) assets = get_assets(3) index = pd.MultiIndex.from_product([dates, assets]) values = np.arange(len(index) * len(columns)).reshape( [len(columns), len(index)]).T targets = np.arange(len(index)) fn_inputs = { 'x': pd.DataFrame(values, index, columns), 'y': pd.Series(targets, index), 'n_skip_samples': 2, 'start_i': 1 } new_index = pd.MultiIndex.from_product( [dates[fn_inputs['start_i']::fn_inputs['n_skip_samples'] + 1], assets]) fn_correct_outputs = OrderedDict([ ('non_overlapping_x', pd.DataFrame([[3, 27], [4, 28], [5, 29], [12, 36], [13, 37], [14, 38], [21, 45], [22, 46], [23, 47]], new_index, columns)), ('non_overlapping_y', pd.Series([3, 4, 5, 12, 13, 14, 21, 22, 23], new_index)) ]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_get_long_short(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'close': pd.DataFrame([[25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookback_high': pd.DataFrame( [[np.nan, np.nan, np.nan], [92.11310000, 91.05430000, 90.95720000], [35.4411, 34.1799, 34.0223], [92.11310000, 91.05430000, 90.95720000]], dates, tickers), 'lookback_low': pd.DataFrame([[np.nan, np.nan, np.nan], [34.1705, 92.453, 58.5107], [15.67180000, 12.34530000, 34.05270000], [27.18340000, 12.34530000, 23.29320000]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('long_short', pd.DataFrame([[0, 0, 0], [-1, -1, -1], [1, 1, -1], [0, 0, 0]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_signal_return(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'signal': pd.DataFrame( [[0, 0, 0], [-1, -1, -1], [1, 0, 0], [0, 0, 0], [0, 1, 0]], dates, tickers), 'lookahead_returns': pd.DataFrame( [[0.88702896, 0.96521098, 0.65854789], [1.13391240, 0.87420969, -0.53914925], [0.35450805, -0.56900529, -0.64808965], [0.38572896, -0.94655617, 0.123564379], [np.nan, np.nan, np.nan]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('signal_return', pd.DataFrame( [[0, 0, 0], [-1.13391240, -0.87420969, 0.53914925], [0.35450805, 0, 0], [0, 0, 0], [np.nan, np.nan, np.nan]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_return_lookahead(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'close': pd.DataFrame([[25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [62.3457, 92.2524, 65.7893], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookahead_prices': pd.DataFrame([[62.34570000, 92.25240000, 65.78930000], [78.28030000, 34.38540000, 23.29320000], [88.87250000, 52.22300000, 34.41070000], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('lookahead_returns', pd.DataFrame([[0.88702896, 0.96521098, 0.65854789], [1.13391240, 0.87420969, -0.53914925], [0.35450805, -0.56900529, -0.64808965], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_positions(fn): tickers = generate_random_tickers(5) dates = generate_random_dates(6) fn_inputs = { 'prices': pd.DataFrame( [ [65.40757705426432, 27.556319958924323, 50.59935209411175, 56.274712269629134, 99.9873070881051], [47.82126720752715, 56.812865745668375, 40.75685814634723, 27.469680989736023, 41.449858088448735], [88.20038097315815, 45.573972499280494, 36.592711369868724, 21.36570423559795, 0.698919959739297], [14.670236824202721, 49.557949251949054, 18.935364730808935, 23.163368660093298, 8.075599541367884], [41.499140208637705, 9.75987296846733, 66.08677766062186, 37.927861417544385, 10.792730405945827], [86.26923464863536, 32.12679487375028, 15.621592524570282, 77.1908860965619, 52.733950486350444]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'final_positions', pd.DataFrame( [ [30, 0, 30, 30, 30], [0, 30, 0, 0, 0], [30, 0, 0, 0, -10], [-10, 0, -10, 0, -10], [0, -10, 30, 0, -10], [30, 0, -10, 30, 30]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_factor_betas(fn): n_components = 3 dates = generate_random_dates(4) assets = get_assets(3) pca = PCA(n_components) pca.fit( pd.DataFrame([[0.21487253, 0.12342312, -0.13245215], [0.23423439, -0.23434532, 1.67834324], [0.23432445, -0.23563226, 0.23423523], [0.24824535, -0.23523435, 0.36235236]], dates, assets)) fn_inputs = { 'pca': pca, 'factor_beta_indices': np.array(assets), 'factor_beta_columns': np.arange(n_components) } fn_correct_outputs = OrderedDict([ ('factor_betas', pd.DataFrame([[0.00590170, -0.07759542, 0.99696746], [-0.13077609, 0.98836246, 0.07769983], [0.99139436, 0.13083807, 0.00431461]], fn_inputs['factor_beta_indices'], fn_inputs['factor_beta_columns'])) ]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_generate_dollar_volume_weights(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'close': pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107]], dates, tickers), 'volume': pd.DataFrame( [ [9.83683e+06, 1.78072e+07, 8.82982e+06], [8.22427e+07, 6.85315e+07, 4.81601e+07], [1.62348e+07, 1.30527e+07, 9.51201e+06], [1.06742e+07, 5.68313e+07, 9.31601e+06]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'dollar_volume_weights', pd.DataFrame( [ [0.27719777, 0.48394253, 0.23885970], [0.41632975, 0.34293308, 0.24073717], [0.41848548, 0.33536102, 0.24615350], [0.05917255, 0.85239760, 0.08842984]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_idiosyncratic_var_matrix(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { 'returns': pd.DataFrame( [ [ 0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [ 1.93769376, -0.48275934, 0.34957348], [ 0.23985234, 0.35897345, 0.34598734]], dates, assets), 'factor_returns': pd.DataFrame([ [-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734]], dates), 'factor_betas': pd.DataFrame([ [ 0.00590170, -0.07759542, 0.99696746], [-0.13077609, 0.98836246, 0.07769983], [ 0.99139436, 0.13083807, 0.00431461]]), 'ann_factor': 250} fn_correct_outputs = OrderedDict([ ( 'idiosyncratic_var_matrix', pd.DataFrame(np.full([3,3], 0.0), assets, assets))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_simple_moving_average(fn): tickers = generate_random_tickers(5) dates = generate_random_dates(6) fn_inputs = { 'close': pd.DataFrame( [ [21.050810483942833, 17.013843810658827, 10.984503755486879, 11.248093428369392, 12.961712733997235], [15.63570258751384, 14.69054309070934, 11.353027688995159, 475.74195118202061, 11.959640427803022], [482.34539247360806, 35.202580592515041, 3516.5416782257166, 66.405314327318209, 13.503960481087077], [10.918933017418304, 17.9086438675435, 24.801265417692324, 12.488954191854916, 10.52435923388642], [10.675971965144655, 12.749401436636365, 11.805257579935713, 21.539039489843024, 19.99766036804861], [11.545495378369814, 23.981468434099405, 24.974763062186504, 36.031962102997689, 14.304332320024963]], dates, tickers), 'rolling_window': 3} fn_correct_outputs = OrderedDict([ ( 'returns', pd.DataFrame( [ [np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan], [173.01063518,22.30232250,1179.62640322,184.46511965,12.80843788], [169.63334269,22.60058918,1184.23199044,184.87873990,11.99598671], [167.98009915,21.95354197,1184.38273374,33.47776934,14.67532669], [11.04680012,18.21317125,20.52709535,23.35331859,14.94211731]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_signal_return(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'signal': pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 0, 0], [0, 0, 0], [0, 1, 0]], dates, tickers), 'lookahead_returns': pd.DataFrame( [ [0.88702896, 0.96521098, 0.65854789], [1.13391240, 0.87420969, -0.53914925], [0.35450805, -0.56900529, -0.64808965], [0.38572896, -0.94655617, 0.123564379], [np.nan, np.nan, np.nan]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'signal_return', pd.DataFrame( [ [0, 0, 0], [-1.13391240, -0.87420969, 0.53914925], [0.35450805, 0, 0], [0, 0, 0], [np.nan, np.nan, np.nan]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_dividend_weights(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "dividends": pd.DataFrame( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.1], [0.0, 1.0, 0.3], [0.0, 0.2, 0.0]], dates, tickers, ) } fn_correct_outputs = OrderedDict([( "dividend_weights", pd.DataFrame( [ [np.nan, np.nan, np.nan], [0.00000000, 0.00000000, 1.00000000], [0.00000000, 0.71428571, 0.28571429], [0.00000000, 0.75000000, 0.25000000], ], dates, tickers, ), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_lookahead_prices(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'close': pd.DataFrame( [ [25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [62.3457, 92.2524, 65.7893], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookahead_days': 2} fn_correct_outputs = OrderedDict([ ( 'lookahead_prices', pd.DataFrame( [ [62.34570000, 92.25240000, 65.78930000], [78.28030000, 34.38540000, 23.29320000], [88.87250000, 52.22300000, 34.41070000], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_factor_cov_matrix(fn): dates = generate_random_dates(4) fn_inputs = { "factor_returns": pd.DataFrame( [ [-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734], ], dates, ), "ann_factor": 250, } fn_correct_outputs = OrderedDict([( "factor_cov_matrix", np.array([ [162.26559808, 0.0, 0.0], [0.0, 159.86284454, 0.0], [0.0, 0.0, 333.09785876], ]), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_idiosyncratic_var_vector(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { "returns": pd.DataFrame( [ [0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734], ], dates, assets, ), "idiosyncratic_var_matrix": pd.DataFrame( [ [0.02272535, 0.0, 0.0], [0.0, 0.05190083, 0.0], [0.0, -0.49001128, 0.05431181], ], assets, assets, ), } fn_correct_outputs = OrderedDict([( "idiosyncratic_var_vector", pd.DataFrame([0.02272535, 0.05190083, 0.05431181], assets), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_weighted_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958]], dates, tickers), 'weights': pd.DataFrame( [ [0.03777059, 0.04733924, 0.05197790], [0.82074874, 0.48533938, 0.75792752], [0.10196420, 0.05866016, 0.09578226], [0.03951647, 0.40866122, 0.09431233]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'weighted_returns', pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.31241616, 0.80759119, 1.26836009], [-0.03779367, -0.02143549, -0.03449679], [-0.01622375, 0.24521625, 0.00050642]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_factor_betas(fn): n_components = 3 dates = generate_random_dates(4) assets = get_assets(3) pca = PCA(n_components) pca.fit(pd.DataFrame( [ [0.21487253, 0.12342312, -0.13245215], [0.23423439, -0.23434532, 1.67834324], [0.23432445, -0.23563226, 0.23423523], [0.24824535, -0.23523435, 0.36235236]], dates, assets)) fn_inputs = { 'pca': pca, 'factor_beta_indices': np.array(assets), 'factor_beta_columns': np.arange(n_components)} fn_correct_outputs = OrderedDict([ ( 'factor_betas', pd.DataFrame( [ [ 0.00590170, -0.07759542, 0.99696746], [-0.13077609, 0.98836246, 0.07769983], [ 0.99139436, 0.13083807, 0.00431461]], fn_inputs['factor_beta_indices'], fn_inputs['factor_beta_columns']))]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_get_high_lows_lookback(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "high": pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107], ], dates, tickers, ), "low": pd.DataFrame( [ [15.6718, 75.1392, 34.0527], [27.1834, 12.3453, 95.9373], [28.2503, 24.2854, 23.2932], [86.3725, 32.223, 38.4107], ], dates, tickers, ), "lookback_days": 2, } fn_correct_outputs = OrderedDict([ ( "lookback_high", pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [92.11310000, 91.05430000, 90.95720000], [92.11310000, 91.05430000, 90.95720000], ], dates, tickers, ), ), ( "lookback_low", pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [15.67180000, 12.34530000, 34.05270000], [27.18340000, 12.34530000, 23.29320000], ], dates, tickers, ), ), ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_idiosyncratic_var_matrix(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { 'returns': pd.DataFrame([[0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734]], dates, assets), 'factor_returns': pd.DataFrame([[-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734]], dates), 'factor_betas': pd.DataFrame([[0.00590170, -0.07759542, 0.99696746], [-0.13077609, 0.98836246, 0.07769983], [0.99139436, 0.13083807, 0.00431461]]), 'ann_factor': 250 } fn_correct_outputs = OrderedDict([('idiosyncratic_var_matrix', pd.DataFrame(np.full([3, 3], 0.0), assets, assets))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_date_top_industries(fn): tickers = generate_random_tickers(10) dates = generate_random_dates(2) fn_inputs = { 'prices': pd.DataFrame( [[ 21.050810483942833, 17.013843810658827, 10.984503755486879, 11.248093428369392, 12.961712733997235, 482.34539247360806, 35.202580592515041, 3516.5416782257166, 66.405314327318209, 13.503960481087077 ], [ 15.63570258751384, 14.69054309070934, 11.353027688995159, 475.74195118202061, 11.959640427803022, 10.918933017418304, 17.9086438675435, 24.801265417692324, 12.488954191854916, 15.63570258751384 ]], dates, tickers), 'sector': pd.Series([ 'ENERGY', 'MATERIALS', 'ENERGY', 'ENERGY', 'TELECOM', 'FINANCIALS', 'TECHNOLOGY', 'HEALTH', 'MATERIALS', 'REAL ESTATE' ], tickers), 'date': dates[-1], 'top_n': 4 } fn_correct_outputs = OrderedDict([('top_industries', {'ENERGY', 'HEALTH', 'TECHNOLOGY'})]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "prices": pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107], ], dates, tickers, ) } fn_correct_outputs = OrderedDict([( "returns", pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958], ], dates, tickers, ), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_covariance_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "returns": pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958], ], dates, tickers, ) } fn_correct_outputs = OrderedDict([( "returns_covariance", np.array([ [0.89856076, 0.7205586, 0.8458721], [0.7205586, 0.78707297, 0.76450378], [0.8458721, 0.76450378, 0.83182775], ]), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_return_lookahead(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'close': pd.DataFrame( [ [25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [62.3457, 92.2524, 65.7893], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookahead_prices': pd.DataFrame( [ [62.34570000, 92.25240000, 65.78930000], [78.28030000, 34.38540000, 23.29320000], [88.87250000, 52.22300000, 34.41070000], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'lookahead_returns', pd.DataFrame( [ [0.88702896, 0.96521098, 0.65854789], [1.13391240, 0.87420969, -0.53914925], [0.35450805, -0.56900529, -0.64808965], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_non_overlapping_estimators(fn): n_estimators = 3 columns = ['test column 1', 'test column 2'] dates = generate_random_dates(8) assets = get_assets(3) index = pd.MultiIndex.from_product([dates, assets]) noise = np.random.RandomState(0).random_sample([len(index)]) * len(index) values = np.arange(len(index) * len(columns)).reshape([len(columns), len(index)]).T targets = np.sum(values, axis=-1) + noise classifiers = [ RandomForestRegressor(300, oob_score=True, n_jobs=-1, random_state=101) for _ in range(n_estimators)] fn_inputs = { 'x': pd.DataFrame(values, index, columns), 'y': pd.Series(targets, index), 'classifiers': classifiers, 'n_skip_samples': 3} random_forest_regressor_fit = RandomForestRegressor.fit with patch.object(RandomForestRegressor, 'fit', autospec=True) as mock_fit: mock_fit.side_effect = random_forest_regressor_fit fn_return_value = fn(**fn_inputs) assert_structure(fn_return_value, [RandomForestRegressor for _ in range(n_estimators)], 'PCA') for classifier in fn_return_value: try: classifier.fit.assert_called() except AssertionError: raise Exception('Test Failure: RandomForestRegressor.fit not called on all classifiers')
def test_fit_pca(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { 'returns': pd.DataFrame([[0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734]], dates, assets), 'num_factor_exposures': 2, 'svd_solver': 'full' } fn_correct_values = { 'PCA': PCA(), 'PCA.components_': np.array([[0.81925896, -0.40427891, 0.40666118], [-0.02011128, 0.68848693, 0.72496985]]) } pca_fit = PCA.fit with patch.object(PCA, 'fit', autospec=True) as mock_fit: mock_fit.side_effect = pca_fit fn_return_value = fn(**fn_inputs) assert_structure(fn_return_value, fn_correct_values['PCA'], 'PCA') try: # print(dir(fn_return_value.fit)) fn_return_value.fit.assert_called() # old python: # fn_return_value.fit.assert_any_call() except AssertionError: raise Exception('Test Failure: PCA.fit not called') try: fn_return_value.fit.assert_called_with(self=fn_return_value, X=fn_inputs['returns']) except Exception: raise Exception( 'Test Failure: PCA.fit called with the wrong arguments') assert_structure(fn_return_value.components_, fn_correct_values['PCA.components_'], 'PCA.components_') if not does_data_match(fn_return_value.components_, fn_correct_values['PCA.components_']): raise Exception('Test Failure: PCA not fitted correctly\n\n' 'PCA.components_:\n' '{}\n\n' 'Expected PCA.components_:\n' '{}'.format(fn_return_value.components_, fn_correct_values['PCA.components_']))
def test_factor_returns(fn): n_components = 3 dates = generate_random_dates(4) assets = get_assets(3) pca = PCA(n_components) pca.fit( pd.DataFrame( [ [0.21487253, 0.12342312, -0.13245215], [0.23423439, -0.23434532, 1.67834324], [0.23432445, -0.23563226, 0.23423523], [0.24824535, -0.23523435, 0.36235236], ], dates, assets, )) fn_inputs = { "pca": pca, "returns": pd.DataFrame( [ [0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734], ], dates, assets, ), "factor_return_indices": np.array(dates), "factor_return_columns": np.arange(n_components), } fn_correct_outputs = OrderedDict([( "factor_returns", pd.DataFrame( [ [-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734], ], fn_inputs["factor_return_indices"], fn_inputs["factor_return_columns"], ), )]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_tracking_error(fn): dates = generate_random_dates(4) fn_inputs = { 'benchmark_returns_by_date': pd.Series([np.nan, 0.99880148, 0.99876653, 1.00024411], dates), 'etf_returns_by_date': pd.Series([np.nan, 0.63859274, 0.93475823, 2.57295727], dates) } fn_correct_outputs = OrderedDict([('tracking_error', 16.5262431971)]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_rebalance_portfolio(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(11) fn_inputs = { 'returns': pd.DataFrame( [[np.nan, np.nan, np.nan], [-0.02202381, 0.02265285, 0.01441961], [0.01947657, 0.00551985, 0.00047382], [0.00537313, -0.00803232, 0.01160313], [0.00593824, -0.00567773, 0.02247191], [0.02479339, 0.01758824, -0.00824176], [-0.0109447, -0.00383568, 0.01361958], [0.01164822, 0.01558719, 0.00614894], [0.0109384, -0.00182079, 0.02900868], [0.01138952, 0.00218049, -0.00954495], [0.0106982, 0.00644535, -0.01815329]], dates, tickers), 'index_weights': pd.DataFrame([[0.00449404, 0.11586048, 0.00359727], [ 0.00403487, 0.12534048, 0.0034428, ], [0.00423485, 0.12854258, 0.00347404], [0.00395679, 0.1243466, 0.00335064], [0.00368729, 0.11750295, 0.00333929], [0.00369562, 0.11447422, 0.00325973], [ 0.00379612, 0.11088075, 0.0031734, ], [0.00366501, 0.10806014, 0.00314648], [0.00361268, 0.10376514, 0.00323257], [0.00358844, 0.10097531, 0.00319009], [0.00362045, 0.09791232, 0.00318071]], dates, tickers), 'shift_size': 2, 'chunk_size': 4 } fn_correct_outputs = OrderedDict([('all_rebalance_weights', [ np.array([0.29341237, 0.41378419, 0.29280344]), np.array([0.29654088, 0.40731481, 0.29614432]), np.array([0.29868214, 0.40308791, 0.29822995]), np.array([0.30100044, 0.39839644, 0.30060312]) ])]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_tracking_error(fn): dates = generate_random_dates(4) fn_inputs = { 'benchmark_returns_by_date': pd.Series( [np.nan, 0.99880148, 0.99876653, 1.00024411], dates), 'etf_returns_by_date': pd.Series( [np.nan, 0.63859274, 0.93475823, 2.57295727], dates)} fn_correct_outputs = OrderedDict([ ( 'tracking_error', 16.5262431971)]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_filter_signals(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(10) fn_inputs = { "signal": pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 0, -1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 1], [-1, 0, 0], [0, 0, 0], ], dates, tickers, ), "lookahead_days": 3, } fn_correct_outputs = OrderedDict([( "filtered_signal", pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 0], [-1, 0, 0], [0, 0, 0], ], dates, tickers, ), )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_fit_pca(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { 'returns': pd.DataFrame( [ [0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734]], dates, assets), 'num_factor_exposures': 2, 'svd_solver': 'full'} fn_correct_values = { 'PCA': PCA(), 'PCA.components_': np.array([ [0.81925896, -0.40427891, 0.40666118], [-0.02011128, 0.68848693, 0.72496985]])} pca_fit = PCA.fit with patch.object(PCA, 'fit', autospec=True) as mock_fit: mock_fit.side_effect = pca_fit fn_return_value = fn(**fn_inputs) assert_structure(fn_return_value, fn_correct_values['PCA'], 'PCA') try: fn_return_value.fit.assert_called() except AssertionError: raise Exception('Test Failure: PCA.fit not called') try: fn_return_value.fit.assert_called_with(self=fn_return_value, X=fn_inputs['returns']) except Exception: raise Exception('Test Failure: PCA.fit called with the wrong arguments') assert_structure(fn_return_value.components_, fn_correct_values['PCA.components_'], 'PCA.components_') if not does_data_match(fn_return_value.components_, fn_correct_values['PCA.components_']): raise Exception('Test Failure: PCA not fitted correctly\n\n' 'PCA.components_:\n' '{}\n\n' 'Expected PCA.components_:\n' '{}'.format(fn_return_value.components_, fn_correct_values['PCA.components_']))
def test_rebalance_portfolio(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(11) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, np.nan, np.nan], [-0.02202381, 0.02265285, 0.01441961], [0.01947657, 0.00551985, 0.00047382], [0.00537313, -0.00803232, 0.01160313], [0.00593824, -0.00567773, 0.02247191], [0.02479339, 0.01758824, -0.00824176], [-0.0109447, -0.00383568, 0.01361958], [0.01164822, 0.01558719, 0.00614894], [0.0109384, -0.00182079, 0.02900868], [0.01138952, 0.00218049, -0.00954495], [0.0106982, 0.00644535, -0.01815329]], dates, tickers), 'index_weights': pd.DataFrame( [ [0.00449404, 0.11586048, 0.00359727], [0.00403487, 0.12534048, 0.0034428, ], [0.00423485, 0.12854258, 0.00347404], [0.00395679, 0.1243466, 0.00335064], [0.00368729, 0.11750295, 0.00333929], [0.00369562, 0.11447422, 0.00325973], [0.00379612, 0.11088075, 0.0031734, ], [0.00366501, 0.10806014, 0.00314648], [0.00361268, 0.10376514, 0.00323257], [0.00358844, 0.10097531, 0.00319009], [0.00362045, 0.09791232, 0.00318071]], dates, tickers), 'shift_size': 2, 'chunk_size': 4} fn_correct_outputs = OrderedDict([ ( 'all_rebalance_weights', [ np.array([0.29341237, 0.41378419, 0.29280344]), np.array([0.29654088, 0.40731481, 0.29614432]), np.array([0.29868214, 0.40308791, 0.29822995]), np.array([0.30100044, 0.39839644, 0.30060312])] )]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_cumulative_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [[np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('cumulative_returns', pd.Series([np.nan, 5.93647782, -0.57128454, -0.68260542], dates)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_weighted_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "returns": pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958], ], dates, tickers, ), "weights": pd.DataFrame( [ [0.03777059, 0.04733924, 0.05197790], [0.82074874, 0.48533938, 0.75792752], [0.10196420, 0.05866016, 0.09578226], [0.03951647, 0.40866122, 0.09431233], ], dates, tickers, ), } fn_correct_outputs = OrderedDict( [ ( "weighted_returns", pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.31241616, 0.80759119, 1.26836009], [-0.03779367, -0.02143549, -0.03449679], [-0.01622375, 0.24521625, 0.00050642], ], dates, tickers, ), ) ] ) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_dollar_volume_weights(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { "close": pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107], ], dates, tickers, ), "volume": pd.DataFrame( [ [9.83683e06, 1.78072e07, 8.82982e06], [8.22427e07, 6.85315e07, 4.81601e07], [1.62348e07, 1.30527e07, 9.51201e06], [1.06742e07, 5.68313e07, 9.31601e06], ], dates, tickers, ), } fn_correct_outputs = OrderedDict( [ ( "dollar_volume_weights", pd.DataFrame( [ [0.27719777, 0.48394253, 0.23885970], [0.41632975, 0.34293308, 0.24073717], [0.41848548, 0.33536102, 0.24615350], [0.05917255, 0.85239760, 0.08842984], ], dates, tickers, ), ) ] ) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_returns(fn): tickers = generate_random_tickers(5) dates = generate_random_dates(6) fn_inputs = { 'close': pd.DataFrame( [[ 21.050810483942833, 17.013843810658827, 10.984503755486879, 11.248093428369392, 12.961712733997235 ], [ 15.63570258751384, 14.69054309070934, 11.353027688995159, 475.74195118202061, 11.959640427803022 ], [ 482.34539247360806, 35.202580592515041, 3516.5416782257166, 66.405314327318209, 13.503960481087077 ], [ 10.918933017418304, 17.9086438675435, 24.801265417692324, 12.488954191854916, 10.52435923388642 ], [ 10.675971965144655, 12.749401436636365, 11.805257579935713, 21.539039489843024, 19.99766036804861 ], [ 11.545495378369814, 23.981468434099405, 24.974763062186504, 36.031962102997689, 14.304332320024963 ]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('returns', pd.DataFrame([ [np.nan, np.nan, np.nan, np.nan, np.nan], [-0.25723988, -0.13655355, 0.03354944, 41.29534136, -0.07731018], [29.84897463, 1.39627496, 308.74483411, -0.86041737, 0.12912763], [-0.97736283, -0.49126900, -0.99294726, -0.81192839, -0.22064647], [-0.02225135, -0.28808672, -0.52400584, 0.72464717, 0.90013092], [0.08144677, 0.88098779, 1.11556274, 0.67286764, -0.28469971] ], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_sharpe_ratio(fn): dates = generate_random_dates(4) factor_names = ['Factor {}'.format(i) for i in range(3)] fn_inputs = { 'factor_returns': pd.DataFrame( [ [ 0.00069242, 0.00072387, 0.00002972], [-0.00028692, 0.00086883, -0.00007235], [-0.00066376, -0.00045934, 0.00007348], [ 0.00085234, 0.00093345, 0.00008734]], dates, factor_names), 'annualization_factor': 16.0} fn_correct_outputs = OrderedDict([ ( 'sharpe_ratio', pd.Series([3.21339895, 12.59157330, 6.54485802], factor_names))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_factor_cov_matrix(fn): dates = generate_random_dates(4) fn_inputs = { 'factor_returns': pd.DataFrame([ [-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734]], dates), 'ann_factor': 250} fn_correct_outputs = OrderedDict([ ( 'factor_cov_matrix', np.array([ [162.26559808, 0.0, 0.0], [0.0, 159.86284454, 0.0], [0.0, 0.0, 333.09785876]]))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_high_lows_lookback(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'high': pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107]], dates, tickers), 'low': pd.DataFrame( [ [15.6718, 75.1392, 34.0527], [27.1834, 12.3453, 95.9373], [28.2503, 24.2854, 23.2932], [86.3725, 32.223, 38.4107]], dates, tickers), 'lookback_days': 2} fn_correct_outputs = OrderedDict([ ( 'lookback_high', pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [92.11310000, 91.05430000, 90.95720000], [92.11310000, 91.05430000, 90.95720000]], dates, tickers)), ( 'lookback_low', pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [15.67180000, 12.34530000, 34.05270000], [27.18340000, 12.34530000, 23.29320000]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_cumulative_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'cumulative_returns', pd.Series( [np.nan, 5.93647782, -0.57128454, -0.68260542], dates))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_covariance_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958]], dates, tickers)} fn_correct_outputs = OrderedDict([( 'returns_covariance', np.array( [ [0.89856076, 0.7205586, 0.8458721], [0.7205586, 0.78707297, 0.76450378], [0.8458721, 0.76450378, 0.83182775]]))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_arithmetic_rate_of_return(fn): tickers = generate_random_tickers(5) dates = generate_random_dates(6) fn_inputs = { 'close': pd.DataFrame( [[ 21.050810483942833, 17.013843810658827, 10.984503755486879, 11.248093428369392, 12.961712733997235 ], [ 15.63570258751384, 14.69054309070934, 11.353027688995159, 475.74195118202061, 11.959640427803022 ], [ 482.34539247360806, 35.202580592515041, 3516.5416782257166, 66.405314327318209, 13.503960481087077 ], [ 10.918933017418304, 17.9086438675435, 24.801265417692324, 12.488954191854916, 10.52435923388642 ], [ 10.675971965144655, 12.749401436636365, 11.805257579935713, 21.539039489843024, 19.99766036804861 ], [ 11.545495378369814, 23.981468434099405, 24.974763062186504, 36.031962102997689, 14.304332320024963 ]], dates, tickers) } fn_correct_outputs = OrderedDict([ ('arithmetic_returns', pd.Series( [4.77892789, 0.22689225, 51.39616553, 6.83675173, 0.07443370], tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_filter_signals(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(10) fn_inputs = { 'signal': pd.DataFrame( [[0, 0, 0], [-1, -1, -1], [1, 0, -1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 1], [-1, 0, 0], [0, 0, 0]], dates, tickers), 'lookahead_days': 3 } fn_correct_outputs = OrderedDict([ ('filtered_signal', pd.DataFrame( [[0, 0, 0], [-1, -1, -1], [1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 0], [-1, 0, 0], [0, 0, 0]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_lookahead_prices(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(5) fn_inputs = { 'close': pd.DataFrame([[25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [62.3457, 92.2524, 65.7893], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookahead_days': 2 } fn_correct_outputs = OrderedDict([ ('lookahead_prices', pd.DataFrame([[62.34570000, 92.25240000, 65.78930000], [78.28030000, 34.38540000, 23.29320000], [88.87250000, 52.22300000, 34.41070000], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan]], dates, tickers)) ]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_idiosyncratic_var_vector(fn): dates = generate_random_dates(4) assets = get_assets(3) fn_inputs = { 'returns': pd.DataFrame( [ [ 0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [ 1.93769376, -0.48275934, 0.34957348], [ 0.23985234, 0.35897345, 0.34598734]], dates, assets), 'idiosyncratic_var_matrix': pd.DataFrame([ [0.02272535, 0.0, 0.0], [0.0, 0.05190083, 0.0], [0.0, -0.49001128, 0.05431181]], assets, assets),} fn_correct_outputs = OrderedDict([ ( 'idiosyncratic_var_vector', pd.DataFrame([0.02272535, 0.05190083, 0.05431181], assets))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_get_long_short(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'close': pd.DataFrame( [ [25.6788, 35.1392, 34.0527], [25.1884, 14.3453, 39.9373], [78.2803, 34.3854, 23.2932], [88.8725, 52.223, 34.4107]], dates, tickers), 'lookback_high': pd.DataFrame( [ [np.nan, np.nan, np.nan], [92.11310000, 91.05430000, 90.95720000], [35.4411, 34.1799, 34.0223], [92.11310000, 91.05430000, 90.95720000]], dates, tickers), 'lookback_low': pd.DataFrame( [ [np.nan, np.nan, np.nan], [34.1705, 92.453, 58.5107], [15.67180000, 12.34530000, 34.05270000], [27.18340000, 12.34530000, 23.29320000]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'long_short', pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 1, -1], [0, 0, 0]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_factor_returns(fn): n_components = 3 dates = generate_random_dates(4) assets = get_assets(3) pca = PCA(n_components) pca.fit(pd.DataFrame( [ [0.21487253, 0.12342312, -0.13245215], [0.23423439, -0.23434532, 1.67834324], [0.23432445, -0.23563226, 0.23423523], [0.24824535, -0.23523435, 0.36235236]], dates, assets)) fn_inputs = { 'pca': pca, 'returns': pd.DataFrame( [ [0.02769242, 1.34872387, 0.23460972], [-0.94728692, 0.68386883, -1.23987235], [1.93769376, -0.48275934, 0.34957348], [0.23985234, 0.35897345, 0.34598734]], dates, assets), 'factor_return_indices': np.array(dates), 'factor_return_columns': np.arange(n_components)} fn_correct_outputs = OrderedDict([ ( 'factor_returns', pd.DataFrame( [ [-0.49503261, 1.45332369, -0.08980631], [-1.87563271, 0.67894147, -1.11984992], [-0.13027172, -0.49001128, 1.67259298], [-0.25392567, 0.47320133, 0.04528734]], fn_inputs['factor_return_indices'], fn_inputs['factor_return_columns']))]) assert_output(fn, fn_inputs, fn_correct_outputs, check_parameter_changes=False)
def test_filter_signals(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(10) fn_inputs = { 'signal': pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 0, -1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 1], [-1, 0, 0], [0, 0, 0]], dates, tickers), 'lookahead_days': 3} fn_correct_outputs = OrderedDict([ ( 'filtered_signal', pd.DataFrame( [ [0, 0, 0], [-1, -1, -1], [1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 0], [-1, 0, 0], [0, 0, 0]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_calculate_dividend_weights(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'dividends': pd.DataFrame( [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.1], [0.0, 1.0, 0.3], [0.0, 0.2, 0.0]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'dividend_weights', pd.DataFrame( [ [np.nan, np.nan, np.nan], [0.00000000, 0.00000000, 1.00000000], [0.00000000, 0.71428571, 0.28571429], [0.00000000, 0.75000000, 0.25000000]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
def test_generate_returns(fn): tickers = generate_random_tickers(3) dates = generate_random_dates(4) fn_inputs = { 'prices': pd.DataFrame( [ [35.4411, 34.1799, 34.0223], [92.1131, 91.0543, 90.9572], [57.9708, 57.7814, 58.1982], [34.1705, 92.453, 58.5107]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'returns', pd.DataFrame( [ [np.nan, np.nan, np.nan], [1.59904743, 1.66397210, 1.67345829], [-0.37065629, -0.36541822, -0.36015840], [-0.41055669, 0.60004777, 0.00536958]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)