def test_gen_C(self): output = tests.read_from_output(lambda: tests.execute_file(self.gen_c_path)) file_list = ["qumico.c", "qumico.so", "qumico.h", "qumico_type.h"] folder_list = [QUMICO_LIB, QUMICO_INCLUDE] self.assertTrue(tests.is_dir_contains(dirs=self.output_path, folder_list=folder_list, file_list=file_list)) self.assertIn("Cソースを生成しました。出力先:", output)
def test_dataset_tool_instance_training_flag_true_data_label_different( self): result = tests.read_from_output(lambda: dataset_tool.DatasetTool( training_flag=True, data=self.dataset, label=numpy.array([1, 2, 3, 5, 6]))) self.assertIn("学習データサイズが異なる, 入力データサイズ = 3 ラベルサイズ = 5", result)
def test_conv_test(self): output = tests.read_from_output( lambda: conv_test.conv_test(model=self.model, test_data=self.dataset_test, ckpt_file=self.ckpt_file, batch_size=1000)) self.assertIn("Total", output) self.assertIn("Accuracy", output)
def test_vgg16_infer(self): vgg16_infer.classes = self.classes_test count_correct = 0 for x in vgg16_infer.classes: vgg16_infer.img_file = os.path.join(self.input_path, (x + ".jpg")) output = tests.read_from_output(lambda: vgg16_infer.main()) if x in output: count_correct += 1 accuracy = count_correct / len(self.classes_test) self.assertGreaterEqual(accuracy, 0.7)
def test_gen_c(self): res = tests.read_from_output( lambda: tests.execute_file(self.gen_c_path)) file_list = ["numpy.c", "qumico.c", "qumico.so"] folder_list = ["include", "initializers", "lib"] self.assertIn("Cソースを生成しました。出力先:", res) self.assertTrue( tests.is_dir_contains(self.output_path, file_list=file_list, folder_list=folder_list))
def test_conv_onnx(self): output = tests.read_from_output( lambda: tests.execute_file(self.module_path)) folder_list = ["model"] file_list = ["tiny_yolo_v2_yad2k.onnx"] self.assertTrue( tests.is_dir_contains(dirs=self.current_path, folder_list=folder_list)) self.assertTrue( tests.is_dir_contains(dirs=self.output_path, file_list=file_list)) self.assertIn("tiny_yolo_v2_yad2k.onnxを作成しました。", output)
def test_infer_c(self): res = tests.read_from_output(lambda: mobilenet_infer_c.infer(image_path=self.image_input, so_lib_path=self.c_path)) self.assertIn("tiger", res)
def test_infer_c(self): output = tests.read_from_output( lambda: tests.execute_file(self.module_file_dir)) self.assertIn("sheep", output) self.assertIn("person", output) self.assertIn("cow", output)
def test_vgg16_to_onnx(self): output = tests.read_from_output(lambda: tests.execute_file(self.vgg16_to_onnx_path)) self.assertTrue(tests.is_dir_contains(dirs=self.output_path, file_list=["vgg16.onnx"])) self.assertIn("onnx/vgg16.onnxを作成しました。", output)
def test_infer(self): res = tests.read_from_output(lambda: mobilenet_infer.infer( tflite_model_path=self.tflite_input, image_path=self.image_input)) self.assertIn("tiger", res)
def test_vgg16_test(self): output = tests.read_from_output(lambda: self.vgg_test_instance.main()) self.assertIn("image : ", output) self.assertIn("1", output)
def test_infer(self): res = tests.read_from_output(lambda: automl_infer.infer(tflite_model_path=self.tflite_input, image_path=self.image_input)) self.assertIn("dog", res)
def test_infer_c(self): res = tests.read_from_output(lambda: automl_infer_c.infer( image_path=self.image_input, so_lib_path=self.c_path)) self.assertIn("dog", res)