fontsize = '14' N=100 # Data for plotting v=0.4 t_max = 5.0 gamma = (1-v**2)**(-0.5) # beta = np.arctan(gamma) t = np.linspace(0.0, t_max, N) s0=2 s1 = 0*t light = t ss = s0 + v*t # s = 1 + np.sin(2 * np.pi * t) fig, ax = texfig.subplots() ax.plot(s1, t, color='k', lw=2) ax.plot(ss, t, color='k', lw=2) # Luz 1 t_0 = 0.8 dt_0 = 0.8 tt_max = s0 + v*t_0 tt = np.linspace(0.0, tt_max, N) dist_0 = s0 + v*t_0 t_prime = np.linspace(t_0, tt_max+t_0, N) li_1 = dist_0 - tt ax.plot(li_1, t_prime, color='gold', zorder=0) # Legenda Luz 1
plt.yscale('log') plt.xlabel(r'scale factor \(a\)') plt.ylabel(r'tensor perturbations \(|h|\)') handles, labels = plt.gca().get_legend_handles_labels() slope_handle = plt.Line2D((0,1),(0,0), c='black', ls='dotted') plt.legend(handles + [ slope_handle, bg_legend_handle ], labels + [ r"analytic slope $h(a) \propto a^{-\left(1+\frac{\alphaM}{2}\right)}$", "for " + r"$k=0.01$, $\cT=1$" ], loc='lower left') texfig.savefig('plots/growing_aM') # varying both alphaM and beta plt.clf() fig, axes = texfig.subplots(width=tex_width, nrows=2, ncols=2, sharex=True, sharey=True) for (i, row) in enumerate([["0", "0.1"], ["0.4", "1"]]): for (j, beta_str) in enumerate(row): ax = axes[i][j] plt.sca(ax) plot_parametric_evolution('varying_aM0_beta_' + beta_str, ur'\alphaMnot', LCDM_pvalue=0) ax.set_title(ur'$\beta=' + beta_str + '$') ax.set_xscale('log') ax.set_yscale('log') if i==1: ax.set_xlabel(r'scale factor \(a\)')