def file_translator(file, language): with open(file, 'r') as fh: for f in fh: sentense = TextBlob(f) if language == "english": print sentense.translate(to="en") else: print sentense.translate(to="es") return
def word_translator(words): b = TextBlob(words) if b.detect_language() == "en": print "The word " + words + " is in english and means",\ b.translate(to="es") elif b.detect_language() == "es": print "La palabra " + words +\ " esta en espanol y en ingles significa", b.translate(to="en") return
def get_translate(self, text): text = text.replace("text:", "") blob = TextBlob(text) lan = blob.detect_language() if lan != 'en': sentp = blob.translate(to="en") else: sentp = blob.translate(to="fa") sent = self.sender.sendMessage(str(sentp)) self._editor = telepot.helper.Editor(self.bot, sent) self._edit_msg_ident = telepot.message_identifier(sent)
def flat_doc(document, model, extremes=None): flat_doc = "" for field in document: if not isinstance(document[field], list): continue #No tomamos en cuenta los campos 'id' y '_version_': auto-generados por Solr for value in document[field]: ## Detección y traducción ## if field=='author.authors.authorName' or field=='author.authorBio' or field=='description' or field=='quotes.quoteText': value_blob = TextBlob(value) try: if value_blob.detect_language() != 'en': try: value = value_blob.translate(to='en') except Exception as e: value = value #e = NotTranslated('Translation API returned the input string unchanged.',) except Exception as e: value = value #e = TranslatorError('Must provide a string with at least 3 characters.') ############################ flat_doc += str(value)+' ' #Se aplana el documento en un solo string flat_doc = preprocess_string(flat_doc, CUSTOM_FILTERS) #Preprocesa el string flat_doc = [w for w in flat_doc if w not in stop_words] #Remueve stop words if extremes: flat_doc = [w for w in flat_doc if w not in extremes] flat_doc = [w for w in flat_doc if w in model.vocab] #Deja sólo palabras del vocabulario if flat_doc == []: flat_doc = ['book'] #Si el libro queda vacío, agregarle un token para no tener problemas más adelante return flat_doc
def handle_message_event(event): print(event) text = event.message.text source = event.source id = '' if isinstance(source, SourceUser): id = source.user_id elif isinstance(source, SourceGroup): id = source.group_id set_send_id(id) blob = TextBlob(text) if '狀態' in text: text = text.replace('狀態', '') if text == '': line_bot_api.reply_message( event.reply_token, TextSendMessage(text=get_all_messages())) else: name = text line_bot_api.reply_message(event.reply_token, TextSendMessage(text=get_message(name))) elif '報告' in text: matches = re.search('(.*)報告(\d*)', text) if matches.group(1) == '' and matches.group(2) == '': line_bot_api.reply_message(event.reply_token, TextSendMessage(text=get_all_reports())) elif matches.group(2) == '': line_bot_api.reply_message( event.reply_token, TextSendMessage(text=get_report(matches.group(1)))) else: line_bot_api.reply_message( event.reply_token, TextSendMessage(text=get_report_url(matches.group(1), int(matches.group(2))))) elif '敬禮' in text: line_bot_api.reply_message(event.reply_token, TextSendMessage(text='敬禮')) elif '安安' in text: line_bot_api.reply_message(event.reply_token, TextSendMessage(text='安')) elif '0.0' in text: line_bot_api.reply_message(event.reply_token, TextSendMessage(text='0.0')) elif blob.detect_language() == 'ru': line_bot_api.reply_message( event.reply_token, TextSendMessage(text=str(blob.translate(to='zh-TW'))))
def __get_blob(self, text): """ Translate text with current user locale @param text as str """ try: locales = GLib.get_language_names() user_code = locales[0].split(".")[0] try: from textblob.blob import TextBlob except: return _("You need to install python3-textblob module") blob = TextBlob(text) return str(blob.translate(to=user_code)) except Exception as e: Logger.error("LyricsView::__get_blob(): %s", e) return _("Can't translate this lyrics")
def main(): # Get our data as an array: [title, author, date, content] from read_in() lines = read_in() title = lines[0] author = lines[1] date = lines[2] chinese_blob = TextBlob(lines[3]) en_content = chinese_blob.translate(from_lang="zh-CN", to='en') info("Translated texts: " + str(en_content)) # print translated result to web console. # Combine translated result with ada-content-en.csv to produce new csv. # Make a call to localhost:5000/update with data: [(id),title,author,date,content], "id" field will be automatically generated by reviewing csv file. # please note that in dev environment, 8080 is node app port, while 5000 is python flask app port. r = requests.get("http://localhost:5000/update", headers={'X-API-TOKEN': 'FOOBAR1'}, data={'title': title, 'author': author, 'date': date, 'content': en_content}) info("INFO: " + r.text) # training updated backup.csv. r_train = requests.get("http://localhost:5000/train", headers={'X-API-TOKEN': 'FOOBAR1'}, data={'data-url': 'backup.csv'}) info("INFO: " + r_train.text) # predicting updated backup.csv. r_predict = requests.post("http://localhost:5000/predict", headers={'X-API-TOKEN': 'FOOBAR1'}, data={'item': '-1', 'num': 2, 'data-url': 'backup.csv'}) info("INFO: " + r_predict.text)
from textblob.blob import TextBlob blob = TextBlob('Уровень') print(str(blob.translate(to='zh-TW')))
combo = url2content(row['url']) writer.writerow({'id': row['id'], 'title': combo['title'], 'author': combo['author'], 'date': combo['date'], 'url': row['url'], 'content': combo['combined_string']}) print 'Processing scraper NO.' + str(row['id']) ### Connect with ada-content.csv to translate content to english version. with open('ada-content-en.csv', 'w') as target: fieldnames = ['id', 'title', 'author', 'date', 'url', 'content'] writer = csv.DictWriter(target, fieldnames=fieldnames) writer.writeheader() with open('ada-content.csv') as source: reader = csv.DictReader(source.read().splitlines()) for row in reader: chinese_blob = TextBlob(row['content'].decode('utf-8')) en_content = chinese_blob.translate(from_lang="zh-CN", to='en') writer.writerow({'id': row['id'], 'title': row['title'], 'author': row['author'], 'date': row['date'], 'url': row['url'], 'content': en_content}) print 'Processing translator NO. ' + str(row['id'])
for row in reader: combo = url2content(row['url']) writer.writerow({ 'id': row['id'], 'title': combo['title'], 'author': combo['author'], 'date': combo['date'], 'content': combo['combined_string'] }) print 'Processing scraper NO.' + str(row['id']) ### Connect with ada-content.csv to translate content to english version. with open('ada-content-en.csv', 'w') as target: fieldnames = ['id', 'title', 'author', 'date', 'content'] writer = csv.DictWriter(target, fieldnames=fieldnames) writer.writeheader() with open('ada-content.csv') as source: reader = csv.DictReader(source.read().splitlines()) for row in reader: chinese_blob = TextBlob(row['content'].decode('utf-8')) en_content = chinese_blob.translate(from_lang="zh-CN", to='en') writer.writerow({ 'id': row['id'], 'title': row['title'], 'author': row['author'], 'date': row['date'], 'content': en_content }) print 'Processing translator NO. ' + str(row['id'])