Esempio n. 1
0
def main():
    from gensim import corpora, models, similarities
    import csv
    import textedit
    import time
    import collections
    import glob

    stopfile = open("D:/Lresult/NV_s5/subrev_1000.csv", "r")
    stopdata = csv.reader(stopfile)
    stoplist = collections.Counter()
    for line in stopdata:
        stoplist[line[0]] = 1
    stopfile.close()

    buslist = glob.glob("D:/Lresult/NVbus/*")
    print len(buslist)

    ##make document bow
    for bus in buslist:
        dfile = open(bus, "r")
        ddata = csv.reader(dfile)
        dlist = []
        busname = ""
        for line in ddata:
            busname = line[2]
            if (line[0] not in stoplist):
                te = line[5]
                doc = textedit.textedit(te)
                dlist.append(doc)
        dfile.close()
        texts = [[word for word in document.lower().split()]
                 for document in dlist]
        dictionary = corpora.Dictionary(texts)
        dictionary.save_as_text("D:/Lresult/NVbusdict/" + busname + ".dict")
Esempio n. 2
0
def main(pas_):
    import collections
    import csv
    import textedit
    import time

    pas = str(pas_)

    print "mkcorpus_start", time.ctime()
    ##make documents
    dnum = 0
    subfile = open(pas + "subrev_1000.csv", "r")
    subdata = csv.reader(subfile)
    subdata.next()
    for line in subdata:
        te = line[5]
        doc = textedit.textedit(te)
        dlist = doc.split()
        wlist = collections.Counter()
        for t in dlist:
            wlist[t] = wlist[t] + 1
        wfile = open(pas + "subrevbow/" + line[0] + ".csv", "wb")
        wri = csv.writer(wfile)
        wri.writerow(["word", "num"])
        wri.writerows(wlist.items())
        wfile.close()
    subfile.close()
Esempio n. 3
0
def main():
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	import collections
	import glob

	stopfile=open("D:/Lresult/NV_s5/subrev_1000.csv","r")
	stopdata=csv.reader(stopfile)
	stoplist=collections.Counter()
	for line in stopdata:
		stoplist[line[0]]=1
	stopfile.close()

	buslist=glob.glob("D:/Lresult/NVbus/*")
	print len(buslist)

	##make document bow
	for bus in buslist:
		dfile=open(bus,"r")
		ddata=csv.reader(dfile)
		dlist=[]
		busname=""
		for line in ddata:
			busname=line[2]
			if(line[0] not in stoplist):
					te=line[5]
					doc=textedit.textedit(te)
					dlist.append(doc)
		dfile.close()
		texts = [[word for word in document.lower().split()] for document in dlist]
		dictionary = corpora.Dictionary(texts)
		dictionary.save_as_text("D:/Lresult/NVbusdict/"+busname+".dict")
Esempio n. 4
0
def main(pas_):
	import collections
	import csv
	import textedit
	import time

	pas=str(pas_)

	print "mkcorpus_start",time.ctime()
	##make documents
	dnum=0
	subfile=open(pas+"subrev_1000.csv","r")
	subdata=csv.reader(subfile)
	subdata.next()
	for line in subdata:
		te=line[5]
		doc=textedit.textedit(te)
		dlist=doc.split()
		wlist=collections.Counter()
		for t in dlist:
			wlist[t]=wlist[t]+1
		wfile=open(pas+"subrevbow/"+line[0]+".csv","wb")
		wri=csv.writer(wfile)
		wri.writerow(["word","num"])
		wri.writerows(wlist.items())
		wfile.close()
	subfile.close()
Esempio n. 5
0
def main(model_,bnum_,tnum_,train_):
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	pas=""

	print "mkcorpus_start",time.ctime()
	# remove common words and tokenize
	#stopfile=open("stopwords_en.csv","r")
	#stopdata=csv.reader(stopfile)
	#stoplist=[]
	#for line in stopdata:
	#	stoplist.append(line[0])
	#stopfile.close()
	#print stoplist

	##make documents
	dlist=[]
	dfile=open("notNVreview.csv","r")
	#dfile=open("testrev.csv")
	ddata=csv.reader(dfile)
	dnum=0
	for line in ddata:
		te=line[0]
		doc=textedit.textedit(te)
		dlist.append(doc)
		dnum=dnum+1
		if(dnum%10000==0):
			print dnum,
	dfile.close()
	#print dlist
	print "dfile fin",time.ctime()

	texts = [[word for word in document.lower().split()] for document in dlist]
	print "text fin",time.ctime()
	# remove words that appear only once
	#all_tokens = sum(texts, [])
	#tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
	#texts = [[word for word in text if word not in tokens_once] for text in texts]

	#print(texts)
	#print("texts fin")

	dictionary = corpora.Dictionary(texts)
	print "dictionary fin",time.ctime(),len(dictionary.token2id)
	dictionary.filter_extremes(no_below=10,no_above=0.5)
	print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

	dictionary.save("nNVreview.dict")
	dictionary.save_as_text(pas+"nNVreview_text.dict")

	corpus=[dictionary.doc2bow(text) for text in texts]
	corpora.MmCorpus.serialize(pas+"nNVreview.mm", corpus)
	#print corpus
	print "mk_corpus fin",time.ctime()
Esempio n. 6
0
def main(clus_):
    from gensim import corpora, models, similarities
    import csv
    import textedit
    import time
    pas = "******"
    clus = str(clus_)

    print "mkcorpus_start", time.ctime()
    # remove common words and tokenize
    #stopfile=open("stopwords_en.csv","r")
    #stopdata=csv.reader(stopfile)
    #stoplist=[]
    #for line in stopdata:
    #	stoplist.append(line[0])
    #stopfile.close()
    #print stoplist

    ##make documents
    for clus in range(0, 10):
        clus = str(clus)
        dlist = []
        dfile = open(
            "D:/Lresult/ks/o4b6t500LDAbus_p/4bEjOyTaDG24SY5TxsaUNQ.csv", "r")
        #dfile=open("testrev.csv")
        ddata = csv.reader(dfile)
        ddata.next()
        dnum = 0
        for line in ddata:
            if (line[6] == clus):
                te = line[5]
                doc = textedit.textedit(te)
                dlist.append(doc)
        dfile.close()
        print "dfile fin", time.ctime()

        texts = [[word for word in document.lower().split()]
                 for document in dlist]
        print "text fin", time.ctime()
        # remove words that appear only once
        #all_tokens = sum(texts, [])
        #tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
        #texts = [[word for word in text if word not in tokens_once] for text in texts]

        #print(texts)
        #print("texts fin")

        dictionary = corpora.Dictionary(texts)
        print "dictionary fin", time.ctime(), len(dictionary.token2id)
        #dictionary.filter_extremes(no_below=10,no_above=0.5)
        #print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

        #dictionary.save("clus"+clus+".dict")
        dictionary.save_as_text(pas + "clus" + clus + "_text.dict")
Esempio n. 7
0
def main(clus_):
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	pas="******"
	clus=str(clus_)

	print "mkcorpus_start",time.ctime()
	# remove common words and tokenize
	#stopfile=open("stopwords_en.csv","r")
	#stopdata=csv.reader(stopfile)
	#stoplist=[]
	#for line in stopdata:
	#	stoplist.append(line[0])
	#stopfile.close()
	#print stoplist

	##make documents
	for clus in range(0,10):
		clus=str(clus)
		dlist=[]
		dfile=open("D:/Lresult/ks/o4b6t500LDAbus_p/4bEjOyTaDG24SY5TxsaUNQ.csv","r")
		#dfile=open("testrev.csv")
		ddata=csv.reader(dfile)
		ddata.next()
		dnum=0
		for line in ddata:
			if(line[6]==clus):
						te=line[5]
						doc=textedit.textedit(te)
						dlist.append(doc)
		dfile.close()
		print "dfile fin",time.ctime()

		texts = [[word for word in document.lower().split()] for document in dlist]
		print "text fin",time.ctime()
		# remove words that appear only once
		#all_tokens = sum(texts, [])
		#tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
		#texts = [[word for word in text if word not in tokens_once] for text in texts]

		#print(texts)
		#print("texts fin")

		dictionary = corpora.Dictionary(texts)
		print "dictionary fin",time.ctime(),len(dictionary.token2id)
		#dictionary.filter_extremes(no_below=10,no_above=0.5)
		#print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

		#dictionary.save("clus"+clus+".dict")
		dictionary.save_as_text(pas+"clus"+clus+"_text.dict")
Esempio n. 8
0
def main():
	from gensim import corpora
	import csv
	import textedit
	import collections

	stopfile=open("D:/Lresult/NV_s5/subrev_1000.csv","r")
	stopdata=csv.reader(stopfile)
	stoplist=collections.Counter()
	for line in stopdata:
		te=line[5]
		dlist=[]
		doc=textedit.textedit(te)
		dlist.append(doc)
		texts = [word for word in document.lower().split()] 
		dictionary = corpora.Dictionary(texts)
		dictionary.save_as_text("D:/Lresult/NV_s5/subrevdict/"+line[0]+".dict")
	stopfile.close()
Esempio n. 9
0
def main():
    import csv
    import textedit
    import time
    import collections
    import glob

    stopfile = open("D:/Lresult/NV_s5/subrev_1000.csv", "r")
    stopdata = csv.reader(stopfile)
    stoplist = collections.Counter()
    for line in stopdata:
        stoplist[line[0]] = 1
    stopfile.close()

    buslist = glob.glob("D:/Lresult/NVbus/*")
    print len(buslist)

    ##make document bow
    for bus in buslist:
        dfile = open(bus, "r")
        ddata = csv.reader(dfile)
        busname = ""
        wlist = collections.Counter()
        for line in ddata:
            busname = line[2]
            if (line[0] not in stoplist):
                te = line[5]
                doc = textedit.textedit(te)
                dlist = doc.split()
                for t in dlist:
                    wlist[t] = wlist[t] + 1
        wfile = open("D:/Lresult/NVbusbow/" + busname + ".csv", "wb")
        writer = csv.writer(wfile)
        writer.writerow(["word", "num"])
        writer.writerows(wlist.items())
        wfile.close()
        dfile.close()
Esempio n. 10
0
def main():
	import csv
	import textedit
	import time
	import collections
	import glob

	stopfile=open("D:/Lresult/NV_s5/subrev_1000.csv","r")
	stopdata=csv.reader(stopfile)
	stoplist=collections.Counter()
	for line in stopdata:
		stoplist[line[0]]=1
	stopfile.close()

	buslist=glob.glob("D:/Lresult/NVbus/*")
	print len(buslist)

	##make document bow
	for bus in buslist:
		dfile=open(bus,"r")
		ddata=csv.reader(dfile)
		busname=""
		wlist=collections.Counter()
		for line in ddata:
			busname=line[2]
			if(line[0] not in stoplist):
					te=line[5]
					doc=textedit.textedit(te)
					dlist=doc.split()
					for t in dlist:
						wlist[t]=wlist[t]+1
		wfile=open("D:/Lresult/NVbusbow/"+busname+".csv","wb")
		writer=csv.writer(wfile)
		writer.writerow(["word","num"])
		writer.writerows(wlist.items())
		wfile.close()
		dfile.close()
Esempio n. 11
0
from gensim import corpora, models, similarities
import csv
import textedit
import time
pas="******"

print "start",time.ctime()
dlist=[]
dfile=open(pas+"nNVreview.csv","r")
ddata=csv.reader(dfile)
dnum=0
for line in ddata:
	te=line[0]
	doc=textedit.textedit(te)
	dlist.append(doc)
	dnum=dnum+1
	if(dnum%100000==0):
		print dnum,
dfile.close()
#print dlist
print "dfile fin",time.ctime()
texts = [[word for word in document.lower().split()] for document in dlist]
print "text fin",len(dlist),time.ctime()

##dictionary_load
dictionary=corpora.Dictionary.load(pas+"/corpus_pl/nNVreviewpl.dict")

####stopword_load
sfile=open(pas+"stopwords/over4word.csv","r")
sdata=csv.reader(sfile)
slist=[]
Esempio n. 12
0
def main(cluster,fwords):
    import csv
    import os
    import collections
    import textedit
    import numpy

    busname="4bEjOyTaDG24SY5TxsaUNQ"
    pas="******"
    pas2="//kaede/PPTShare/masafumi/musc/20151117"
    fewords=int(fwords)####feature word num
    cnum=int(cluster)###cluster_num

    ifile=open(pas+"/ks/busclus/"+busname+".csv","r")
    idata=csv.reader(ifile)
    idata.next()
    cluslist=collections.Counter()
    for line in idata:
        ####revid,sentiment_num,clus
        cluslist[line[0],line[1]]=int(line[2])
    ifile.close()
    ifile=open(pas2+"/ks/bussent/"+busname+".csv","r")
    idata=csv.reader(ifile)
    wlist=collections.Counter()####word dictionary for each cluster
    for num in range(0,cnum):
        wlist[num]=collections.Counter()
    for line in idata:
        doc=textedit.textedit(line[5])
        doc=doc.split()
        for t in doc:
            wlist[cluslist[line[0],line[6]]][t]=wlist[cluslist[line[0],line[6]]][t]+1
    ifile.close()

    tflist=collections.Counter()
    wordlen=[]
    wordsum=collections.Counter()
    for t in range(0,cnum):
        wordlen.append(len(wlist[t]))
        wordsum[t]=sum(wlist[t].values())
        for w in wlist[t]:
            tflist[w]=tflist[w]+1
    print wordlen,max(wordlen)

    wfile=open(pas+"/ks/busclusword/"+busname+".csv","wb")
    writer=csv.writer(wfile)
    header=[]
    for num in map(str,range(0,cnum)):
        header=header+["c"+num+"word","c"+num+"num","c"+num+"tfidf"]
    writer.writerow(header)

    for num in range(0,max(wordlen)):
        wwlist=[]
        for t in range(0,10):
            if(len(wlist[t])<=num):
                wwlist=wwlist+["_",0,0]
            else:
                tmp=wlist[t].items()
                wwlist.append(tmp[num][0])
                wwlist.append(tmp[num][1])
                wwlist.append(1.0*tmp[num][1]/wordsum[t]*numpy.log(1+10.0/tflist[tmp[num][0]]))
        writer.writerow(wwlist)
    wfile.close()
Esempio n. 13
0
def main(model_, bnum_, tnum_, train_, pas_):
    from gensim import corpora, models, similarities
    import csv
    import textedit
    import time
    import glob

    model = str(model_)
    bnum = int(bnum_)
    tnum = int(tnum_)
    train = str(train_)
    pas = str(pas_)

    print "mkcorpus_start", time.ctime()
    #remove subrev
    subfile = open(pas + "subrev_1000.csv", "r")
    subdata = csv.reader(subfile)
    sublist = []
    for line in subdata:
        sublist.append(line[0])
    subfile.close()

    ##remove stoplist
    stopfile = open(pas + "stopwords/over4word.csv", "r")
    stopdata = csv.reader(stopfile)
    stoplist = []
    for line in stopdata:
        stoplist.append(line[0])
    stopfile.close()
    stopset = set(stoplist)

    ##make documents
    st = "D:/Lresult/NVbus/*"
    dlist = glob.glob(st)
    print len(dlist), "star"
    dnum = 0
    for bus in dlist:
        dfile = open(bus, "r")
        ddata = csv.reader(dfile)
        dlist = []
        for line in ddata:
            if (line[0] not in sublist):
                te = line[5]
                doc = textedit.textedit(te)
                dlist.append(doc)
                dnum = dnum + 1
                if (dnum % 1000 == 0):
                    print dnum,
        dfile.close()

        texts = [[word for word in document.lower().split()]
                 for document in dlist]
        #print "text fin",time.ctime(),texts
        texts = [[word for word in text if word not in stopset]
                 for text in texts]

        dictionary = corpora.Dictionary(texts)
        #print "dictionary fin",time.ctime(),len(dictionary.token2id)
        #dictionary.filter_extremes(no_below=bnum)
        #print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

        #dictionary.save(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".dict")
        dictionary.save_as_text(pas + "NVbus_o4b6_bow/" + bus[17:-4] + ".tsv")
Esempio n. 14
0
ddata = csv.reader(dfile)
ddic = collections.Counter()
for line in ddata:
    ddic[line[0]] = map(float, line[1:])
dfile.close()
print "dic fin", len(ddic), len(ddic["we"]), time.ctime()

##base data
revfile = open("D:/Lresult/NV_s5/subrev_1000.csv", "r")
revdata = csv.reader(revfile)
revdata.next()
revid = collections.Counter()
revvec = collections.Counter()
for line in revdata:
    revid[line[0]] = line[2]  ##bus_id
    text = textedit.textedit(line[5])
    revvec[line[0]] = numpy.array([0] * int(dim))
    for num in range(0, len(text)):
        if (num not in stoplist):
            revvec[line[0]] = revvec[line[0]] + numpy.array(ddic[text[num]])
revfile.close()
print "rev fin", len(revvec), time.ctime()

####comp data
sfile = open("D:/Lresult/NVreview.csv", "r")
sdata = csv.reader(sfile)
sdata.next()
svec = collections.Counter()
lnum = 0
slist = []
for line in sdata:
Esempio n. 15
0
def main(model_,bnum_,tnum_,train_,pas_):
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	import glob

	model=str(model_)
	bnum=int(bnum_)
	tnum=int(tnum_)
	train=str(train_)
	pas=str(pas_)

	print "mkcorpus_start",time.ctime()
	#remove subrev
	subfile=open(pas+"subrev_1000.csv","r")
	subdata=csv.reader(subfile)
	sublist=[]
	for line in subdata:
		sublist.append(line[0])
	subfile.close()

	##remove stoplist
	stopfile=open(pas+"stopwords/over4word.csv","r")
	stopdata=csv.reader(stopfile)
	stoplist=[]
	for line in stopdata:
		stoplist.append(line[0])
	stopfile.close()
	stopset=set(stoplist)

	##make documents
	st="D:/Lresult/NVbus/*"
	dlist=glob.glob(st)
	print len(dlist),"star"
	dnum=0
	for bus in dlist:
		dfile=open(bus,"r")
		ddata=csv.reader(dfile)
		dlist=[]
		for line in ddata:
			if(line[0] not in sublist):
				te=line[5]
				doc=textedit.textedit(te)
				dlist.append(doc)
				dnum=dnum+1
				if(dnum%1000==0):
					print dnum,
		dfile.close()

		texts = [[word for word in document.lower().split()] for document in dlist]
		#print "text fin",time.ctime(),texts
		texts = [[word for word in text if word not in stopset] for text in texts]

		dictionary = corpora.Dictionary(texts)
		#print "dictionary fin",time.ctime(),len(dictionary.token2id)
		#dictionary.filter_extremes(no_below=bnum)
		#print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

		#dictionary.save(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".dict")
		dictionary.save_as_text(pas+"NVbus_o4b6_bow/"+bus[17:-4]+".tsv")
Esempio n. 16
0
#calc topic sim
header=[]
header.append("rev_id")
header.append("bus_id")
for num in range(1,51):
	header.append(str(num))

wfile=open("subrevtopic.csv","wb")
writer=csv.reader(wfile)
writer.writerow(header)

ifile=open("subrev.csv","r")
idata=csv.reader(ifile)
idata.next()
for line in idata:
	wlist=[]
	wlist.append(line[0])
	wlist.append(line[1])
	doc=textedit.textedit(line[2])
	vec_bow = dictionary.doc2bow(doc.lower().split())
	vec_lda = lda[vec_bow]
	slist=[0]*50
	for num in range(0,len(vec_lda)):
		slist[vec_lda[num][0]]=vec_lda[num][1]
	wlist=wlist+slist
	writer.writerow(wlist)

ifile.close()
wfile.close()
Esempio n. 17
0
def main(model_,bnum_,tnum_,train_,pas_):
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	model=str(model_)
	bnum=int(bnum_)
	tnum=int(tnum_)
	train=str(train_)
	pas=str(pas_)

	print "start",time.ctime()

	#dictionary = corpora.Dictionary.load(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".dict")
    #corpus = corpora.MmCorpus(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".mm")
	dictionary = corpora.Dictionary.load(pas+"over4/corpus/nNVrev_o4b6.dict")

	#use LSI
	#lsi = models.LsiModel.load(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".lsi")
	#if(model=="lda"):
	#	lsi=models.LdaModel.load(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".lda")
	lsi = models.LsiModel.load(pas+"over4/model/nNVrevo4b6_t300.lsi")

	#calc topic sim
	header=[]
	header.append("rev_id")
	header.append("user_id")
	header.append("bus_id")
	header.append("stars")
	header.append("sentnum")
	header.append("date")
	for num in range(0,int(tnum)):
		header.append("t"+str(num).zfill(len(str(tnum))/10))

	#wfile=open(pas+train+model+"_o4b"+str(bnum)+"t"+str(tnum)+".csv","wb")
	wfile=open(pas+"model/hoge.csv","wb")
	writer=csv.writer(wfile)
	writer.writerow(header)

	"NVreview.csv:[review_id,user_id,business_id,stars,date,texts]"
	#test file
	ifile=open(pas+"ks/NVrevrawsent.csv","r")
	idata=csv.reader(ifile)
	idata.next()
	k=0
	for line in idata:
		wlist=[]
		wlist.append(line[0])
		wlist.append(line[1])
		wlist.append(line[2])
		wlist.append(line[3])
		wlist.append(line[6])###for revraw only
		wlist.append(line[4])

		doc=textedit.textedit(line[5])
		vec_bow = dictionary.doc2bow(doc.lower().split())
		vec_lsi = lsi[vec_bow]
		slist=[0]*int(tnum)
		for num in range(0,len(vec_lsi)):
			slist[vec_lsi[num][0]]=vec_lsi[num][1]
		wlist=wlist+slist
		writer.writerow(wlist)
	        k=k+1
		if(k%1000==0):
			print k,time.ctime()

	ifile.close()
	wfile.close()
	print "fin",time.ctime()
Esempio n. 18
0
def main(model_,bnum_,tnum_,train_,pas_):
	from gensim import corpora, models, similarities
	import csv
	import textedit
	import time
	model=str(model_)
	bnum=int(bnum_)
	tnum=int(tnum_)
	train=str(train_)
	pas=str(pas_)

	print "mkcorpus_start",time.ctime()
	#remove subrev
	subfile=open(pas+"subrev_1000.csv","r")
	subdata=csv.reader(subfile)
	sublist=[]
	for line in subdata:
		stoplist.append(line[0])
	subfile.close()

	##remove stoplist
	stopfile=open(pas+"stopwords/over4word.csv","r")
	stopdata=csv.reader(stopfile)
	stoplist=[]
	for line in stopdata:
		stoplist.append(line[0])
	stopfile.close()
	stopset=set(stoplist)

	##make documents
	dfile=open(pas+train+".csv","r")
	ddata=csv.reader(dfile)
	ddata.next()
	dnum=0
	dlist=[]
	for line in ddata:
		if(line[0] not in sublist):
			te=line[5]
			doc=textedit.textedit(te)
			dlist.append(doc)
			dnum=dnum+1
			if(dnum%10000==0):
				print dnum,
	dfile.close()
	print "dfile fin",time.ctime()

	texts = [[word for word in document.lower().split()] for document in dlist]
	print "text fin",time.ctime()
	texts = [[word for word in text if word not in stopset] for text in texts]

	dictionary = corpora.Dictionary(texts)
	print "dictionary fin",time.ctime(),len(dictionary.token2id)
	dictionary.filter_extremes(no_below=bnum)
	print "dictionary cut fin",time.ctime(),len(dictionary.token2id)

	dictionary.save(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".dict")
	dictionary.save_as_text(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+"_text.dict")

	corpus=[dictionary.doc2bow(text) for text in texts]
	corpora.MmCorpus.serialize(pas+train+"_o4b"+str(bnum)+"t"+str(tnum)+".mm", corpus)
	print "mk_corpus fin",time.ctime()
Esempio n. 19
0
	header.append("t"+str(num).zfill(int(topic_num)/10))

wfile=open(pas+"nNVrev_LSI_t"+str(topic_num)+".csv","wb")
writer=csv.writer(wfile)
writer.writerow(header)

"NVreview.csv:[review_id,user_id,business_id,stars,date,texts]"
ifile=open("D:/Lresult/NVreview.csv","r")
idata=csv.reader(ifile)
idata.next()
k=0
for line in idata:
	wlist=[]
	wlist.append(line[0])
	wlist.append(line[2])
	doc=textedit.textedit(line[5])
	vec_bow = dictionary.doc2bow(doc.lower().split())
	vec_lsi = lsi[vec_bow]
        ###
	slist=[0]*int(topic_num)
	for num in range(0,len(vec_lsi)):
		slist[vec_lsi[num][0]]=vec_lsi[num][1]
	wlist=wlist+slist
	writer.writerow(wlist)
        k=k+1
	if(k%1000==0):
		print k,time.ctime()

ifile.close()
wfile.close()
print "fin",time.ctime()