Esempio n. 1
0
 def testParallelVarianceOneAtATime(self):
     x = np.random.randn(5, 10)
     n, avg, m2 = 1, x[0], 0
     for row in range(1, 5):
         n, avg, m2 = tensor_normalizer.parallel_variance_calculation(
             n_a=n, avg_a=avg, m2_a=m2, n_b=1, avg_b=x[row], m2_b=0)
     var = m2 / n
     self.assertAllClose(avg, x.mean(axis=0))
     self.assertAllClose(var, x.var(axis=0))
 def testParallelVarianceForOneGroup(self):
     x = tf.constant(np.random.randn(5, 10))
     n = 5
     avg, var = tf.nn.moments(x, axes=[0])
     m2 = var * n
     new_n, new_avg, new_m2, _ = tensor_normalizer.parallel_variance_calculation(
         n, avg, m2, n_b=0, avg_b=0, m2_b=0, m2_b_c=0)
     new_var = new_m2 / n
     (avg, var, new_avg, new_var) = self.evaluate(
         (avg, var, new_avg, new_var))
     self.assertEqual(new_n, 5)
     self.assertAllClose(new_avg, avg)
     self.assertAllClose(new_var, var)
Esempio n. 3
0
 def testParallelVarianceCombinesGroups(self):
     x1 = tf.constant(np.random.randn(5, 10))
     x2 = tf.constant(np.random.randn(15, 10))
     n1 = 5
     n2 = 15
     avg1, var1 = tf.nn.moments(x1, axes=[0])
     avg2, var2 = tf.nn.moments(x2, axes=[0])
     m2_1 = var1 * n1
     m2_2 = var2 * n2
     n, avg, m2 = tensor_normalizer.parallel_variance_calculation(
         n1, avg1, m2_1, n2, avg2, m2_2)
     var = m2 / n
     avg_true, var_true = tf.nn.moments(tf.concat((x1, x2), axis=0),
                                        axes=[0])
     avg, var, avg_true, var_true = self.evaluate(
         (avg, var, avg_true, var_true))
     self.assertAllClose(avg, avg_true)
     self.assertAllClose(var, var_true)
 def testParallelVarianceCombinesGroups(self):
     x1 = tf.constant(np.random.randn(5, 10))
     x2 = tf.constant(np.random.randn(15, 10))
     n1 = 5
     n2 = 15
     avg1 = tf.math.reduce_mean(x1, axis=[0])
     m2_1 = tf.math.reduce_sum(tf.math.squared_difference(x1, avg1),
                               axis=[0])
     avg2 = tf.math.reduce_mean(x2, axis=[0])
     m2_2 = tf.math.reduce_sum(tf.math.squared_difference(x2, avg2),
                               axis=[0])
     m2_c = m2_2 * 0.
     n, avg, m2, _ = tensor_normalizer.parallel_variance_calculation(
         n1, avg1, m2_1, n2, avg2, m2_2, m2_c)
     var = m2 / n
     avg_true, var_true = tf.nn.moments(tf.concat((x1, x2), axis=0),
                                        axes=[0])
     avg, var, avg_true, var_true = self.evaluate(
         (avg, var, avg_true, var_true))
     self.assertAllClose(avg, avg_true)
     self.assertAllClose(var, var_true)