Esempio n. 1
0
    def test_binarize(self) -> None:
        x = int64factory.tensor(tf.constant([
            2**62 + 3,
            2**63 - 1,
            2**63 - 2,
            -3
        ], shape=[2, 2], dtype=tf.int64))

        y = x.to_bits()

        expected = np.array([
            [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
            [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
            [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        ]).reshape([2, 2, 64])

        with tf.Session() as sess:
            actual = sess.run(y.to_native())

        np.testing.assert_array_equal(actual, expected)
Esempio n. 2
0
    def test_forward(self) -> None:
        # input
        batch_size, channels_in, channels_out = 32, 3, 64
        img_height, img_width = 28, 28
        input_shape = (batch_size, channels_in, img_height, img_width)
        input_conv = np.random.normal(size=input_shape).astype(np.int64)

        # filters
        h_filter, w_filter, strides = 2, 2, 2
        filter_shape = (h_filter, w_filter, channels_in, channels_out)
        filter_values = np.random.normal(size=filter_shape).astype(np.int64)

        x_in = int64factory.tensor(input_conv)
        out = x_in.conv2d(int64factory.tensor(filter_values), strides)
        with tf.Session() as sess:
            actual = sess.run(out.to_native())

        # reset graph
        tf.reset_default_graph()

        # convolution tensorflow
        with tf.Session() as sess:
            # conv input
            x = tf.Variable(input_conv, dtype=tf.float32)
            x_nhwc = tf.transpose(x, (0, 2, 3, 1))

            # convolution Tensorflow
            filters_tf = tf.Variable(filter_values, dtype=tf.float32)

            conv_out_tf = tf.nn.conv2d(
                x_nhwc,
                filters_tf,
                strides=[1, strides, strides, 1],
                padding="SAME",
            )

            sess.run(tf.global_variables_initializer())
            out_tensorflow = sess.run(conv_out_tf).transpose(0, 3, 1, 2)

        np.testing.assert_array_almost_equal(actual, out_tensorflow, decimal=3)
Esempio n. 3
0
    def test_random_binarize(self) -> None:
        input = np.random.uniform(low=2**63 + 1, high=2**63 - 1, size=2000).astype(np.int64).tolist()
        x = int64factory.tensor(tf.constant(input, dtype=tf.int64))

        y = x.to_bits()

        with tf.Session() as sess:
            actual = sess.run(y.to_native())

        j = 0
        for i in input:
            if i < 0:
                binary = bin(((1 << 64) - 1) & i)[2:][::-1]
            else:
                binary = bin(i)
                binary = binary[2:].zfill(64)[::-1]
            bin_list = np.array(list(binary)).astype(np.int64)
            np.testing.assert_equal(actual[j], bin_list)
            j += 1