Esempio n. 1
0
def _required_space_to_batch_paddings(converter, node, inputs: List[str]):

    inputs_node = [converter.outputs[inputs[i]] for i in range(len(inputs))]
    inputs_int32 = []
    for x_in in inputs_node:
        pvt_check = isinstance(x_in, PondPrivateTensor)
        msk_check = isinstance(x_in, PondMaskedTensor)
        if pvt_check or msk_check:
            logging.warning(("Revealing private input: "
                             "required_space_to_batch_paddings assumes public "
                             "input."))
            inputs_int32.append(tf.cast(x_in.reveal().decode(), tf.int32))
        elif isinstance(x_in, tf.NodeDef):
            inputs_int32.append(_nodef_to_numpy_array(x_in))
        else:
            raise TypeError("Unexpected input of type {}.".format(type(x_in)))

    if len(inputs_int32) == 2:
        input_shape, block_shape = inputs_int32

        def inputter_pad():
            pads, _ = tf.required_space_to_batch_paddings(
                input_shape, block_shape)
            return tf.cast(pads, tf.float64)

        def inputter_crop():
            _, crops = tf.required_space_to_batch_paddings(
                input_shape, block_shape)
            return tf.cast(crops, tf.float64)

    else:
        base_paddings, input_shape, block_shape = inputs_int32

        def inputter_pad():
            pads, _ = tf.required_space_to_batch_paddings(
                input_shape,
                block_shape,
                base_paddings=base_paddings,
            )
            return tf.cast(pads, tf.float64)

        def inputter_crop():
            _, crops = tf.required_space_to_batch_paddings(
                input_shape,
                block_shape,
                base_paddings=base_paddings,
            )
            return tf.cast(crops, tf.float64)

    pad_private = tfe.define_public_input(
        converter.model_provider,
        inputter_pad,
    )
    crop_private = tfe.define_public_input(
        converter.model_provider,
        inputter_crop,
    )

    return (pad_private, crop_private)
Esempio n. 2
0
def _nodef_to_public_pond(converter, x):
  """Map a NodeDef x to a PublicPondTensor."""
  dtype = x.attr["dtype"].type
  x_shape = [i.size for i in x.attr["value"].tensor.tensor_shape.dim]

  if not x_shape:
    if dtype == tf.float32:
      nums = x.attr["value"].tensor.float_val
    elif dtype == tf.float64:
      nums = x.attr["value"].tensor.float_val
    elif dtype == tf.int32:
      nums = x.attr["value"].tensor.int_val
    else:
      raise TypeError("Unsupported dtype")

    def inputter_fn():
      return tf.constant(np.array(nums).reshape(1, 1))

  else:
    if dtype == tf.float32:
      nums = array.array('f', x.attr["value"].tensor.tensor_content)
    elif dtype == tf.float64:
      nums = array.array('d', x.attr["value"].tensor.tensor_content)
    elif dtype == tf.int32:
      nums = array.array('i', x.attr["value"].tensor.tensor_content)
    else:
      raise TypeError("Unsupported dtype")

    def inputter_fn():
      return tf.constant(np.array(nums).reshape(x_shape))

  x_public = tfe.define_public_input(
      converter.model_provider, inputter_fn)

  return x_public
Esempio n. 3
0
def _rsqrt(converter, node: Any, inputs: List[str]) -> Any:
  x_in = converter.outputs[inputs[0]]

  if isinstance(x_in, tf.NodeDef):
    tensor = x_in.attr["value"].tensor
    shape = [i.size for i in tensor.tensor_shape.dim]

    dtype = x_in.attr["dtype"].type
    if dtype == tf.float32:
      nums = array.array('f', tensor.tensor_content)
    elif dtype == tf.float64:
      nums = array.array('d', tensor.tensor_content)

    else:
      raise TypeError("Unsupported dtype for rsqrt")

    def inputter_fn():
      return tf.constant(1 / np.sqrt(np.array(nums).reshape(shape)))

  else:
    # XXX this is a little weird but the input into rsqrt is public and
    # being used only for batchnorm at the moment
    decoded = tfe._decode(x_in.value_on_0, True)  # pylint: disable=protected-access

    def inputter_fn():
      return tf.rsqrt(decoded)

  x = tfe.define_public_input(
      converter.model_provider, inputter_fn)

  return x
Esempio n. 4
0
def test_matmul_public_private():
    tf.reset_default_graph()

    prot = ABY3()
    tfe.set_protocol(prot)

    def provide_input():
        # normal TensorFlow operations can be run locally
        # as part of defining a private input, in this
        # case on the machine of the input provider
        return tf.constant(np.array([[1.1, 1.2], [1.3, 1.4], [1.5, 1.6]]))

    # define inputs
    x = tfe.define_private_variable(tf.ones(shape=(2, 2)))
    y = tfe.define_public_input('input-provider', provide_input)
    v = tfe.define_constant(np.ones((2, 2)))

    # define computation
    w = y.matmul(x)  # matmul_public_private
    z = w.matmul(v)  # matmul_private_public

    with tfe.Session() as sess:
        # initialize variables
        sess.run(tfe.global_variables_initializer())
        # reveal result
        result = sess.run(w.reveal())
        close(result, np.array([[2.3, 2.3], [2.7, 2.7], [3.1, 3.1]]))
        result = sess.run(z.reveal())
        close(result, np.array([[4.6, 4.6], [5.4, 5.4], [6.2, 6.2]]))
        print("test_matmul_public_private succeeds")