Esempio n. 1
0
def test_should_apply_grey_patch_on_image():
    input_image = np.zeros((10, 20, 3))

    output = apply_grey_patch(input_image, 0, 0, 10)

    expected_output = np.concatenate(
        [127.5 * np.ones(
            (10, 10, 3)), np.zeros((10, 10, 3))], axis=1)

    np.testing.assert_almost_equal(output, expected_output)
Esempio n. 2
0
    def get_sensitivity_map(self, model, image, class_index, patch_size):
        """
        Compute sensitivity map on a given image for a specific class index.

        Args:
            model (tf.keras.Model): tf.keras model to inspect
            image:
            class_index (int): Index of targeted class
            patch_size (int): Size of patch to apply on the image

        Returns:
            np.ndarray: Sensitivity map with shape (H, W, 3)
        """
        sensitivity_map = np.zeros((
            math.ceil(image.shape[0] / patch_size),
            math.ceil(image.shape[1] / patch_size),
        ))

        coordinates = [
            (index_y, index_x) for index_x in range(sensitivity_map.shape[1]  # pylint: disable=unsubscriptable-object
                                                    )
            for index_y in range(sensitivity_map.shape[0]  # pylint: disable=unsubscriptable-object
                                 )
        ]

        target_class_predictions = []
        base_confidence = model.predict(np.array([image]),
                                        batch_size=1)[0][class_index]
        print(f"Base_confidence: {base_confidence}")
        with tqdm(total=math.ceil(image.shape[0] * image.shape[1] /
                                  patch_size**2),
                  position=0,
                  leave=True) as pbar:
            for index_y, top_left_y in enumerate(
                    range(0, image.shape[1], patch_size)):
                for index_x, top_left_x in enumerate(
                        range(0, image.shape[0], patch_size)):
                    patch = np.array([
                        apply_grey_patch(image, top_left_x, top_left_y,
                                         patch_size)
                    ])
                    prediction = model.predict(patch,
                                               batch_size=1)[0][class_index]
                    target_class_predictions.append(prediction)
                    triggered = pbar.update(1)

        print(f"Confidence scores: {target_class_predictions}")
        for (index_y, index_x), confidence in zip(coordinates,
                                                  target_class_predictions):
            sensitivity_map[index_y, index_x] = base_confidence - confidence

        return cv2.resize(sensitivity_map, image.shape[0:2])
    def get_sensitivity_map(self, model, image, class_index, patch_size):
        """
        Compute sensitivity map on a given image for a specific class index.

        Args:
            model (tf.keras.Model): tf.keras model to inspect
            image:
            class_index (int): Index of targeted class
            patch_size (int): Size of patch to apply on the image

        Returns:
            np.ndarray: Sensitivity map with shape (H, W, 3)
        """
        sensitivity_map = np.zeros(
            (
                math.ceil(image.shape[0] / patch_size),
                math.ceil(image.shape[1] / patch_size),
            )
        )

        patches = [
            apply_grey_patch(image, top_left_x, top_left_y, patch_size)
            for index_x, top_left_x in enumerate(range(0, image.shape[0], patch_size))
            for index_y, top_left_y in enumerate(range(0, image.shape[1], patch_size))
        ]

        coordinates = [
            (index_y, index_x)
            for index_x in range(
                sensitivity_map.shape[1]  # pylint: disable=unsubscriptable-object
            )
            for index_y in range(
                sensitivity_map.shape[0]  # pylint: disable=unsubscriptable-object
            )
        ]

        predictions = model.predict(np.array(patches), batch_size=self.batch_size)
        target_class_predictions = [
            prediction[class_index] for prediction in predictions
        ]

        for (index_y, index_x), confidence in zip(
            coordinates, target_class_predictions
        ):
            sensitivity_map[index_y, index_x] = 1 - confidence

        return cv2.resize(sensitivity_map, image.shape[0:2])