Esempio n. 1
0
def main():
    config = ConfigLoader("config.yml")
    decay = config.get_amplitude().decay_group
    data = config.get_data("phsp")
    ret = []
    for i in data:
        cached_amp = build_angle_amp_matrix(decay, i)
        ret.append(data_to_numpy(cached_amp))

    idx = config.get_data_index("angle", "R_BC/B")
    ang = data_index(data[0], idx)

    np.savez("phsp.npz", ret)

    for k, v in ret[0].items():
        for i, amp in enumerate(v):
            w = np.abs(amp)**2
            w = np.sum(np.reshape(w, (amp.shape[0], -1)), axis=-1)
            plt.hist(
                np.cos(ang["beta"]),
                weights=w,
                bins=20,
                histtype="step",
                label="{}: {}".format(k, i),
            )
    plt.savefig("angle_costheta.png")
Esempio n. 2
0
def test_load():
    with write_temp_file(resonancs_str) as f:
        cs = config_str.format(file_name=f)
        print(cs)
        with write_temp_file(cs) as g:
            config = ConfigLoader(g)
    config.get_amplitude()
Esempio n. 3
0
def test_chain_phsp():
    dic = yaml.full_load(config_text)
    config = ConfigLoader(dic)
    data = config.generate_toy(10)
    data.mass_hist("(C, F, G, H)").draw()
    import matplotlib.pyplot as plt

    plt.savefig("chain_phsp.png")
Esempio n. 4
0
def test_cp_decay():
    with open(f"{this_dir}/config_toy.yml") as f:
        config_data = yaml.full_load(f)
    config_data["decay_chain"] = {"$all": {"is_cp": True}}
    config = ConfigLoader(config_data)

    amp = config.get_amplitude()
    data = config.get_data("data")[0]
    amp(data)
Esempio n. 5
0
def test_constrains():
    with write_temp_file(resonancs_str) as f:
        cs = config_str.format(file_name=f)
        print(cs)
        with write_temp_file(cs) as g:
            config = ConfigLoader(g)

    amp = config.get_amplitude()
    config.add_free_var_constraints(amp)
Esempio n. 6
0
def single_fit(config_dict, data, phsp, bg):
    config = ConfigLoader(config_dict)

    print("\n########### initial parameters")
    pprint(config.get_params())
    print(config.full_decay)
    fit_result = config.fit(data, phsp, bg=bg)
    pprint(fit_result.params)
    # fit_result.save_as("final_params.json")
    return fit_result.min_nll, fit_result.ndf
Esempio n. 7
0
def plot(params_file):
    config = ConfigLoader("config.yml")
    with open(params_file) as f:
        params = yaml.safe_load(f)
    params = params["value"]
    config.plot_partial_wave(params,
                             plot_pull=True,
                             prefix="fig/",
                             save_pdf=True,
                             save_root=True)
Esempio n. 8
0
def plot_all(
    res="MI(1+)S",
    config_file="config.yml",
    params="final_params.json",
    prefix="figure/",
):
    """plot all figure"""
    config = ConfigLoader(config_file)
    config.set_params(params)
    particle = config.get_decay().get_particle(res)

    mi, r, phi_i, r_e, phi_e = load_params(config_file, params, res)
    x, y, x_e, y_e = trans_r2xy(r, phi_i, r_e, phi_e)

    m = np.linspace(mi[0], mi[-1], 1000)
    M_Kpm = 0.49368
    M_Dpm = 1.86961
    M_Dstar0 = 2.00685
    M_Bpm = 5.27926
    # x_new = interp1d(xi, x, "cubic")(m)
    # y_new = interp1d(xi, y, "cubic")(m)
    rm_new = particle.interp(m).numpy()
    x_new, y_new = rm_new.real, rm_new.imag

    pq = dalitz_weight(m * m, M_Bpm, M_Dstar0, M_Dpm, M_Kpm)
    pq_i = dalitz_weight(mi * mi, M_Bpm, M_Dstar0, M_Dpm, M_Kpm)

    phi = np.arctan2(y_new, x_new)
    r2 = x_new * x_new + y_new * y_new

    plot_phi(f"{prefix}phi.png", m, phi, mi, np.arctan2(y, x))
    plot_x_y(
        f"{prefix}r2.png",
        m,
        r2,
        mi,
        r * r,
        "mass",
        "$|R(m)|^2$",
        ylim=(0, None),
    )
    plot_x_y(f"{prefix}x_y.png", x_new, y_new, x, y, "real R(m)", "imag R(m)")
    plot_x_y_err(f"{prefix}x_y_err.png", x[1:-1], y[1:-1], x_e[1:-1],
                 y_e[1:-1])
    plot_x_y(
        f"{prefix}r2_pq.png",
        m,
        r2 * pq,
        mi,
        r * r * pq_i,
        "mass",
        "$|R(m)|^2 p \cdot q$",
        ylim=(0, None),
    )
    plot3d_m_x_y(f"{prefix}m_r.gif", m, x_new, y_new)
Esempio n. 9
0
def cal_fitfractions(params_file):
    config = ConfigLoader("config.yml")
    config.set_params(params_file)
    params = config.get_params()
    config.get_params_error(params)

    mcdata = (
        config.get_phsp_noeff()
    )  # use the file of PhaseSpace MC without efficiency indicated in config.yml
    fit_frac, err_frac = fit_fractions(
        config.get_amplitude(), mcdata, config.inv_he, params
    )
    print("########## fit fractions:")
    fit_frac_string = ""
    for i in fit_frac:
        if isinstance(i, tuple):
            name = "{}x{}".format(*i)  # interference term
        else:
            name = i  # fit fraction
        fit_frac_string += "{} {}\n".format(
            name, error_print(fit_frac[i], err_frac.get(i, None))
        )
    print(fit_frac_string)
    print("########## fit fractions table:")
    print_frac_table(
        fit_frac_string
    )  # print the fit-fractions as a 2-D table. The codes below are just to implement the print function.
Esempio n. 10
0
def main():
    config = ConfigLoader("config.yml")
    config.set_params("final_params.json")
    amp = config.get_amplitude()

    data = config.get_data("data_origin")[0]
    phsp = config.get_data("phsp_plot")[0]
    phsp_re = config.get_data("phsp_plot_re")[0]

    print("data loaded")
    amps = amp(phsp_re)
    pw = amp.partial_weight(phsp_re)

    re_weight = phsp_re["weight"]
    re_size = config.resolution_size
    amps = sum_resolution(amps, re_weight, re_size)
    pw = [sum_resolution(i, re_weight, re_size) for i in pw]

    m_idx = config.get_data_index("mass", "R_BC")
    m_phsp = data_index(phsp, m_idx).numpy()
    m_data = data_index(data, m_idx).numpy()

    m_min, m_max = np.min(m_phsp), np.max(m_phsp)

    scale = m_data.shape[0] / np.sum(amps)

    get_hist = lambda m, w: Hist1D.histogram(
        m, weights=w, range=(m_min, m_max), bins=100)

    data_hist = get_hist(m_data, None)
    phsp_hist = get_hist(m_phsp, scale * amps)
    pw_hist = []
    for i in pw:
        pw_hist.append(get_hist(m_phsp, scale * i))

    ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
    ax = plt.subplot2grid((4, 1), (0, 0), rowspan=3, sharex=ax2)
    data_hist.draw_error(ax, label="data")
    phsp_hist.draw(ax, label="fit")

    for i, j in zip(pw_hist, config.get_decay()):
        i.draw_kde(ax, label=str(j.inner[0]))

    (data_hist - phsp_hist).draw_pull(ax2)
    ax.set_ylim((1, None))
    ax.legend()
    ax.set_yscale("log")
    ax.set_ylabel("Events/{:.1f} MeV".format((m_max - m_min) * 10))
    ax2.set_xlabel("M( R_BC )")
    ax2.set_ylabel("pull")
    ax2.set_xlim((1.3, 1.7))
    ax2.set_ylim((-5, 5))
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.savefig("m_R_BC_fit.png")
Esempio n. 11
0
def get_data(config_file="config.yml", init_params="init_params.json"):

    config = ConfigLoader(config_file)
    try:
        config.set_params(init_params)
        print("using {}".format(init_params))
    except Exception as e:
        print("using RANDOM parameters")

    phsp = config.get_data("phsp")

    for i in config.full_decay:
        print(i)
        for j in i:
            print(j.get_ls_list())

    print("\n########### initial parameters")
    print(json.dumps(config.get_params(), indent=2))
    params = config.get_params()

    amp = config.get_amplitude()
    pw = amp.partial_weight(phsp)
    pw_if = amp.partial_weight_interference(phsp)
    weight = amp(phsp)
    print(weight)
    return config, amp, phsp, weight, pw, pw_if
Esempio n. 12
0
def main():
    config = ConfigLoader("config.yml")
    data = config.get_data("data")[0]
    phsp = config.get_data("phsp")[0]
    bg = config.get_data("bg")[0]
    config.set_params("final_params.json")

    mbc_idx = config.get_data_index("mass",
                                    "R_BC")  # ("particle", "(D, K)", "m")
    mbd_idx = config.get_data_index("mass",
                                    "R_BD")  # ("particle", "(D0, K, pi)", "m")
    data_idx = [mbc_idx, mbd_idx]

    data_cut = np.array([data_index(data, idx) for idx in data_idx])
    adapter = AdaptiveBound(data_cut**2, [[2, 2], [3, 3], [2, 2]])
    bound = adapter.get_bounds()

    cal_chi2_config(config,
                    adapter,
                    data,
                    phsp,
                    data_idx,
                    bg=bg,
                    data_cut=data_cut)
    draw_dalitz(data_cut, bound)
Esempio n. 13
0
def fit(final_params_file):
    config = ConfigLoader(
        "config.yml"
    )  # We use ConfigLoader to read the information in the configuration file
    # config.set_params("gen_params.json") # If not set, we will use random initial parameters
    fit_result = config.fit(method="BFGS")

    errors = config.get_params_error(
        fit_result)  # calculate Hesse errors of the parameters
    print("\n########## fit parameters:")
    for key, value in config.get_params().items():
        print(key, error_print(value, errors.get(key, None)))

    fit_result.save_as(final_params_file)  # save fit_result to a json file
    config.plot_partial_wave(
        fit_result
    )  # Plot distributions of variables indicated in the configuration file

    fit_frac, err_frac = config.cal_fitfractions()
    print("\n########## fit fractions:")
    for i in fit_frac:
        if not isinstance(i, tuple):  # fit fraction
            name = i
        else:
            name = "{}x{}".format(*i)  # interference term
        print(name + ": " + error_print(fit_frac[i], err_frac.get(i, None)))
Esempio n. 14
0
def main():
    sigma = 0.005

    config = ConfigLoader("config.yml")
    decay = config.get_decay()
    m0 = decay.top.get_mass()
    m1, m2, m3 = [i.get_mass() for i in decay.outs]

    print("mass: ", m0, " -> ", m1, m2, m3)

    phsp = PhaseSpaceGenerator(m0, [m1, m2, m3])
    p1, p2, p3 = phsp.generate(100000)

    angle = cal_angle_from_momentum({"B": p1, "C": p2, "D": p3}, decay)
    amp = config.get_amplitude()

    m_idx = config.get_data_index("mass", "R_BC")
    m_BC = data_index(angle, m_idx)
    R_BC = decay.get_particle("R_BC1")
    m_R, g_R = R_BC.get_mass(), R_BC.get_width()

    # import matplotlib.pyplot as plt
    # x = np.linspace(1.3, 1.7, 1000)
    # amp = R_BC.get_amp({"m": x}).numpy()
    # plt.plot(x, np.abs(amp)**2)
    # plt.show()

    print("mass: ", m_R, "width: ", g_R)
    amp_s2 = resolution_bw(m_BC, m_R, g_R, sigma, m1 + m2, m0 - m3)

    print("|A|*R: ", amp_s2)
    cut_data = simple_selection(angle, amp_s2)

    ps = [data_index(cut_data, ("particle", i, "p")).numpy() for i in "BCD"]
    np.savetxt("data/data_origin.dat",
               np.transpose(ps, (1, 0, 2)).reshape((-1, 4)))

    p1, p2, p3 = phsp.generate(100000)
    np.savetxt("data/phsp.dat",
               np.transpose([p1, p2, p3], (1, 0, 2)).reshape((-1, 4)))

    p1, p2, p3 = phsp.generate(50000)
    np.savetxt(
        "data/phsp_plot.dat",
        np.transpose([p1, p2, p3], (1, 0, 2)).reshape((-1, 4)),
    )
Esempio n. 15
0
def test_load():
    with write_temp_file(resonancs_str) as f:
        cs = config_str.format(file_name=f)
        print(cs)
        with write_temp_file(cs) as g:
            config = ConfigLoader(g)
            with open(g) as f:
                data = yaml.full_load(f)
            config2 = ConfigLoader(data)
    config.get_amplitude()
    config2.get_amplitude()
Esempio n. 16
0
def main():
    sym.init_printing()
    config = ConfigLoader("config.yml")
    decay_group = config.get_decay()
    decay_chain = list(decay_group)[0]
    print(decay_chain)
    angle = get_angle_distrubution(decay_chain)
    ret = []
    for k, v in angle.items():
        for k2, v2 in v.items():
            f_theta = simplify(v2 * v2.conjugate())
            print("ls: ", k)
            print("  lambda:", k2)
            print("    :", f_theta)
            ret.append(f_theta)
            # break

    f_theta = ret[0]
    plot_theta("costheta.png", f_theta, "theta1")
    plot_theta("costheta2.png", f_theta, "theta2")
    plot_theta("phi2.png", f_theta, "phi2")
Esempio n. 17
0
def main():
    sigma = 0.005
    r_name = "R_BC"

    config = ConfigLoader("config.yml")
    sample_N = config.resolution_size

    decays = config.get_decay(False)
    decay_chain = decays.get_decay_chain(r_name)
    data = config.get_data("data_origin")[0]
    phsp = config.get_data("phsp_plot")[0]

    dat_order = config.get_dat_order()

    generate = lambda x: gauss_random(x, decay_chain, r_name, sigma, sample_N,
                                      dat_order)

    pi = generate(data)
    np.savetxt("data/data.dat", pi)
    np.savetxt("data/data_weight.dat",
               np.ones((pi.shape[0] // len(dat_order), )))

    pi = generate(phsp)
    np.save("data/phsp_re.npy", pi)
    np.savetxt("data/phsp_re_weight.dat",
               np.ones((pi.shape[0] // len(dat_order), )))
Esempio n. 18
0
def main():
    Nbins = 64
    config = ConfigLoader("config.yml")
    # config = MultiConfig(["config.yml"]).configs[0]
    config.set_params("final_params.json")
    name = "R_BC"
    idx = config.get_data_index("mass", "R_BC")
    # idx_costheta = (*config.get_data_index("angle", "DstD/D*"), "beta")

    datas, phsps, bgs, _ = config.get_all_data()
    amp = config.get_amplitude()
    get_data = lambda x: data_index(x, idx).numpy()
    # get_data = lambda x: np.cos(data_index(x, idx_costheta).numpy())
    plot_mass(amp, datas, bgs, phsps, get_data, name, Nbins)
Esempio n. 19
0
def generate_toy_from_phspMC(Ndata, mc_file, data_file):
    """Generate toy using PhaseSpace MC from mc_file"""
    config = ConfigLoader(f"{this_dir}/config_toy.yml")
    config.set_params(f"{this_dir}/gen_params.json")
    amp = config.get_amplitude()
    data = gen_data(
        amp,
        Ndata=Ndata,
        mcfile=mc_file,
        genfile=data_file,
        particles=config.get_dat_order(),
    )
    return data
Esempio n. 20
0
def test_constrains(gen_toy):
    config = ConfigLoader(f"{this_dir}/config_cfit.yml")
    var_name = "A->R_CD.B_g_ls_1r"
    config.config["constrains"]["init_params"] = {var_name: 1.0}

    @config.register_extra_constrains("init_params")
    def float_var(amp, params=None):
        amp.set_params(params)

    config.register_extra_constrains("init_params2", float_var)

    amp = config.get_amplitude()
    assert amp.get_params()[var_name] == 1.0
Esempio n. 21
0
def cal_errors(params_file):
    config = ConfigLoader("config.yml")
    config.set_params(params_file)
    fcn = config.get_fcn()
    fcn.model.Amp.vm.rp2xy_all(
    )  # we can use this to transform all complex parameters to xy-coordinates, since the Hesse errors of xy are more statistically reliable
    params = config.get_params()
    errors, config.inv_he = cal_hesse_error(
        fcn, params, check_posi_def=True, save_npy=True
    )  # obtain the Hesse errors and the error matrix (inverse Hessian)
    print("\n########## fit parameters in XY-coordinates:")
    errors = dict(zip(fcn.model.Amp.vm.trainable_vars, errors))
    for key, value in config.get_params().items():
        print(key, error_print(value, errors.get(key, None)))

    print("\n########## correlation matrix:")
    print("Matrix index:\n", fcn.model.Amp.vm.trainable_vars)
    print("Correlation Coefficients:\n", corr_coef_matrix(config.inv_he)
          )  # obtain the correlation matrix using the inverse Hessian
Esempio n. 22
0
def generate_toy_from_phspMC(Ndata, mc_file, data_file):
    """Generate toy using PhaseSpace MC from mc_file"""
    # We use ConfigLoader to read the information in the configuration file
    config = ConfigLoader("config.yml")
    # Set the parameters in the amplitude model
    config.set_params("gen_params.json")
    amp = config.get_amplitude()
    # data is saved in data_file
    data = gen_data(
        amp,
        Ndata=Ndata,
        mcfile=mc_file,  # input phsase space file
        genfile=data_file,  # saved toy data file
        # use the order in config, the default is ascii order.
        particles=config.get_dat_order(),
    )
    return data
Esempio n. 23
0
def main():
    import argparse

    parser = argparse.ArgumentParser(description="calculate fit fractions")
    parser.add_argument("-c", "--config", default="config.yml")
    parser.add_argument("-i", "--init_params", default="final_params.json")
    parser.add_argument("-e", "--error_matrix", default="error_matrix.npy")
    results = parser.parse_args()

    # load model and parameters and error matrix
    config = ConfigLoader(results.config)
    config.set_params(results.init_params)
    err_matrix = np.load(results.error_matrix)

    amp = config.get_amplitude()
    phsp = config.get_phsp_noeff()  # get_data("phsp")[0]

    cal_frac(amp, phsp, err_matrix)
Esempio n. 24
0
def main():
    sigma = 0.005
    sigma_delta = 5
    r_name = "R_BC"

    config = ConfigLoader("config.yml")

    sample_N = config.resolution_size

    decays = config.get_decay(False)
    decay_chain = decays.get_decay_chain(r_name)
    data = config.get_data("data_origin")[0]
    pi, total_weights = gauss_sample(data, decay_chain, "R_BC", sigma,
                                     sample_N, config.get_dat_order())
    np.savetxt("data/data.dat", pi.reshape((-1, 4)))
    np.savetxt("data/data_weight.dat", np.reshape(total_weights, (-1, )))

    data = config.get_data("phsp_plot")[0]
    pi, total_weights = gauss_sample(data, decay_chain, "R_BC", sigma,
                                     sample_N, config.get_dat_order())
    np.save("data/phsp_re.npy", pi.reshape((-1, 4)))
    np.savetxt("data/phsp_re_weight.dat", np.reshape(total_weights, (-1, )))
Esempio n. 25
0
def load_config(config_file="config.yml", total_same=False):
    config_files = config_file.split(",")
    if len(config_files) == 1:
        return ConfigLoader(config_files[0])
    return MultiConfig(config_files, total_same=total_same)
Esempio n. 26
0
def main():
    sigma = 0.005
    r_name = "DstD"

    config = ConfigLoader("config_data.yml")

    decays = config.get_decay(False)
    decay_chain = decays.get_decay_chain(r_name)
    data = config.get_data("data")[0]
    angle = cal_helicity_angle(data["particle"],
                               decay_chain.standard_topology())
    decay_chain.standard_topology()
    tp_map = decay_chain.topology_map()

    r_particle = tp_map[get_particle(r_name)]

    mass = {}
    for i in data["particle"]:
        mi = data["particle"][i]["m"]
        if i == r_particle:
            mi = mi + tf.random.normal(mi.shape, 0, sigma, dtype=mi.dtype)
        mass[i] = mi

    mask = True
    p4_all = {}
    for i in decay_chain:
        phi = angle[tp_map[i]][tp_map[i.outs[0]]]["ang"]["alpha"]
        theta = angle[tp_map[i]][tp_map[i.outs[0]]]["ang"]["beta"]

        m0 = mass[tp_map[i.core]]
        m1 = mass[tp_map[i.outs[0]]]
        m2 = mass[tp_map[i.outs[1]]]

        mask = mask & (m0 >= m1 + m2)

        p_square = get_relative_p2(m0, m1, m2)

        p = tf.sqrt(tf.where(p_square > 0, p_square, 0))
        pz = p * tf.cos(theta)
        px = p * tf.sin(theta) * tf.cos(phi)
        py = p * tf.sin(theta) * tf.sin(phi)
        E1 = tf.sqrt(m1 * m1 + p * p)
        E2 = tf.sqrt(m2 * m2 + p * p)
        p1 = tf.stack([E1, px, py, pz], axis=-1)
        p2 = tf.stack([E2, -px, -py, -pz], axis=-1)
        p4_all[i.outs[0]] = p1
        p4_all[i.outs[1]] = p2

    core_boost = {}
    for i in decay_chain:
        if i.core != decay_chain.top:
            core_boost[i.outs[0]] = i.core
            core_boost[i.outs[1]] = i.core
    ret = {}
    for i in decay_chain.outs:
        tmp = i
        ret[i] = p4_all[i]
        while tmp in core_boost:
            tmp = core_boost[tmp]
            # print(i, tmp)
            ret[i] = lv.rest_vector(lv.neg(p4_all[tmp]), ret[i])

    ret2 = {}
    mask = tf.expand_dims(mask, -1)
    for i in ret:
        ret2[i] = tf.where(mask, ret[i], data["particle"][tp_map[i]]["p"])
    # print(ret)
    # print({i: data["particle"][tp_map[i]]["p"] for i in decay_chain.outs})

    pi = np.stack([ret2[i] for i in config.get_dat_order()], axis=1)
    np.savetxt("data_gauss.dat", pi.reshape((-1, 4)))
Esempio n. 27
0
def test_cfit(gen_toy):
    config = ConfigLoader(f"{this_dir}/config_cfit.yml")
    config.set_params(f"{this_dir}/gen_params.json")
    fcn = config.get_fcn()
    fcn({})
    fcn.nll_grad({})
Esempio n. 28
0
def toy_config(gen_toy):
    config = ConfigLoader(f"{this_dir}/config_toy.yml")
    config.set_params(f"{this_dir}/exp_params.json")
    return config
Esempio n. 29
0
    R2: { mass: 0.824, width: 0.05, J: 0, P: +1}
    R3: { mass: 0.824, width: 0.05, J: 0, P: +1}

"""

# %%
# The config file can be loaded by `yaml` library.
#

import matplotlib.pyplot as plt
import yaml

from tf_pwa.config_loader import ConfigLoader
from tf_pwa.histogram import Hist1D

config = ConfigLoader(yaml.full_load(config_str))

# %%
# We set parameters to a blance value. And we can generate some toy data and calclute the weights
#

input_params = {
    "A->R1_a.BR1_a->C.D_total_0r": 6.0,
    "A->R1_b.BR1_b->C.D_total_0r": 1.0,
    "A->R2.CR2->B.D_total_0r": 2.0,
    "A->R3.DR3->B.C_total_0r": 1.0,
}
config.set_params(input_params)

data = config.generate_toy(1000)
phsp = config.generate_phsp(10000)
Esempio n. 30
0
def main():
    config = ConfigLoader("config.yml")
    for i, dec in enumerate(config.get_decay()):
        draw_decay_struct(dec,
                          filename="figure/fig_{}".format(i),
                          format="png")