# Output Map weight = weight_variable([1, 1, features, 1], stddev) bias = bias_variable([1], -0.5) conv = conv2d(in_node, weight, tf.constant(1.0)) pred_mask = tf.nn.sigmoid(conv + bias) #pred_mask = tf.nn.relu(conv + bias) # loss #loss = tf.losses.mean_squared_error(pred_mask, crop(s_img,pred_mask)) #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=s_, labels=s)) #loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=s_, labels=s)) loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=conv + bias, labels=crop(s_img, pred_mask))) #sigmoid #loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred_mask, labels=crop(s_img,pred_mask))) #relu loss_sum = tf.summary.scalar("cross_entropy_early", loss) loss_batch = tf.placeholder(tf.float32) loss_batch_summary = tf.summary.scalar("cross_entropy_early", loss_batch) #accuracy #correct_prediction = tf.equal(tf.round(tf.clip_by_value(pred_mask, 0., 1.),),crop(s_img,pred_mask)) # relu correct_prediction = tf.equal(tf.round(pred_mask, ), crop(s_img, pred_mask)) # sigmoid accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64)) accuracy_sum = tf.summary.scalar("accuracy_early", accuracy) accuracy_batch = tf.placeholder(tf.float32)
convs.append((conv1, conv2)) # Output Map weight = weight_variable([1, 1, features_root, 1], stddev) bias = bias_variable([1], -0.5) conv = conv2d(in_node, weight, tf.constant(1.0)) pred_mask = tf.nn.sigmoid(conv + bias) # loss #loss = tf.losses.mean_squared_error(pred_mask, crop(s_img,pred_mask)) #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=s_, labels=s)) #loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=s_, labels=s)) loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=conv + bias, labels=crop(s_img, pred_mask))) #sigmoid #loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred_mask, labels=crop(s_img,pred_mask))) #relu loss_sum = tf.summary.scalar("cross_entropy_unet", loss) loss_batch = tf.placeholder(tf.float32) loss_batch_summary = tf.summary.scalar("cross_entropy_unet", loss_batch) #accuracy #correct_prediction = tf.equal(tf.round(tf.clip_by_value(pred_mask, 0., 1.),),crop(s_img,pred_mask)) # relu correct_prediction = tf.equal(tf.round(pred_mask), crop(s_img, pred_mask)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64)) accuracy_sum = tf.summary.scalar("accuracy_unet", accuracy) accuracy_batch = tf.placeholder(tf.float32) accuracy_batch_summary = tf.summary.scalar("accuracy_unet", accuracy_batch)