Esempio n. 1
0
init_h3 = tf.placeholder(tf.float32, [batch_size, h3_dim])

embed1 = Embedding(inpt, n_symbols, embed1_dim, random_state)
inp_proj, inpgate_proj = GRUFork([embed1], [embed1_dim], h1_dim, random_state)


def step(inp_t, inpgate_t, h1_tm1, h2_tm1, h3_tm1):
    h1 = GRU(inp_t, inpgate_t, h1_tm1, h1_dim, h1_dim, random_state)
    h1_t, h1gate_t = GRUFork([h1], [h1_dim], h2_dim, random_state)
    h2 = GRU(h1_t, h1gate_t, h2_tm1, h2_dim, h2_dim, random_state)
    h2_t, h2gate_t = GRUFork([h2], [h2_dim], h3_dim, random_state)
    h3 = GRU(h2_t, h2gate_t, h3_tm1, h3_dim, h3_dim, random_state)
    return h1, h2, h3


h1, h2, h3 = scan(step, [inp_proj, inpgate_proj], [init_h1, init_h2, init_h3])
final_h1, final_h2, final_h3 = [ni(h1, -1), ni(h2, -1), ni(h3, -1)]

pred = Linear([h3], [h3_dim], out_dim, random_state)
cost = tf.reduce_mean(categorical_crossentropy(softmax(pred), target))

# cost in bits
# cost = cost * 1.44269504089
params = tf.trainable_variables()
print_network(params)
grads = tf.gradients(cost, params)
grads = [tf.clip_by_value(grad, -grad_clip, grad_clip) for grad in grads]
opt = tf.train.AdamOptimizer(learning_rate)
updates = opt.apply_gradients(zip(grads, params))

Esempio n. 2
0
oh_i = OneHot(inpt, n_symbols)
inp_proj, inpgate_proj = GRUFork([oh_i], [n_symbols], enc_h1_dim, random_state)


def enc_step(inp_t, inpgate_t, inpmask_t, h1_tm1):
    enc_h1 = GRU(inp_t,
                 inpgate_t,
                 h1_tm1,
                 enc_h1_dim,
                 enc_h1_dim,
                 random_state,
                 mask=inpmask_t)
    return enc_h1


enc_h1 = scan(enc_step, [inp_proj, inpgate_proj, inpt_mask], [init_enc_h1])
final_enc_h1 = ni(enc_h1, -1)

# Kick off dynamics
init_dec_h1 = tanh(
    Linear([final_enc_h1], [enc_h1_dim], dec_h1_dim, random_state))
oh_target = OneHot(target, n_symbols)

# prepend 0, then slice off last timestep
shift_target = shift(oh_target)
# shift mask the same way? but use 1 to mark as active
# shift_target_mask = shift(target_mask, fill_value=1.)

out_proj, outgate_proj = GRUFork([shift_target], [n_symbols], dec_h1_dim,
                                 random_state)
Esempio n. 3
0
init_h1 = tf.placeholder(tf.float32, [batch_size, h_dim])
init_h2 = tf.placeholder(tf.float32, [batch_size, h_dim])

note_embed = Multiembedding(note_inpt, n_note_symbols, note_embed_dim,
                            random_state)
inp_proj, inpgate_proj = GRUFork([note_embed], [n_notes * note_embed_dim],
                                 h_dim, random_state)


def step(inp_t, inpgate_t, h1_tm1, h2_tm1):
    h1 = GRU(inp_t, inpgate_t, h1_tm1, h_dim, h_dim, random_state)
    h2 = GRU(inp_t, inpgate_t, h2_tm1, h_dim, h_dim, random_state)
    return h1, h2


h1, h2 = scan(step, [inp_proj, inpgate_proj], [init_h1, init_h2])
final_h1 = ni(h1, -1)
final_h2 = ni(h2, -1)

target_note_embed = Multiembedding(note_target, n_note_symbols, note_embed_dim,
                                   random_state)
target_note_masked = Automask(target_note_embed, n_notes)

costs = []
note_preds = []
duration_preds = []
for i in range(n_notes):
    note_pred = Linear([h1, h2, target_note_masked[i]],
                       [h_dim, h_dim, n_notes * note_embed_dim],
                       note_out_dims[i],
                       random_state,
Esempio n. 4
0
                            share_all=share_all_embeddings)

scan_inp = tf.concat(2, [duration_embed, note_embed])
scan_inp_dim = n_notes * duration_embed_dim + n_notes * note_embed_dim


def step(inp_t, h1_tm1):
    h1_t_proj, h1gate_t_proj = RNNFork([inp_t], [scan_inp_dim],
                                       h_dim,
                                       random_state,
                                       weight_norm=weight_norm_middle)
    h1_t = RNN(h1_t_proj, h1gate_t_proj, h1_tm1, h_dim, h_dim, random_state)
    return h1_t


h1_f = scan(step, [scan_inp], [init_h1])
h1 = h1_f
final_h1 = ni(h1, -1)

target_note_embed = Multiembedding(note_target,
                                   n_note_symbols,
                                   note_embed_dim,
                                   random_state,
                                   name=name_note_emb,
                                   share_all=share_all_embeddings)
target_note_masked = Automask(target_note_embed, n_notes)
target_duration_embed = Multiembedding(duration_target,
                                       n_duration_symbols,
                                       duration_embed_dim,
                                       random_state,
                                       name=name_dur_emb,