Esempio n. 1
0
    def __init__(self,
                 encoder_path,
                 word_index,
                 index_word,
                 encoder_trainable=False,
                 hidden_size=768,
                 dropout=.25,
                 n_layers=1,
                 **kwargs):
        super(ClassificationModel, self).__init__(**kwargs)
        self.encoder_trainable = encoder_trainable
        self.to_token = ToTokens(word_index)
        self.to_tags = ToTags(index_word)
        self.encoder_layer = get_encoder(encoder_path, encoder_trainable)
        self.masking = tf.keras.layers.Masking()
        self.dropout_layer = tf.keras.layers.Dropout(dropout)
        if not self.encoder_trainable:
            self.rnn_layers = []
            for _ in range(n_layers):
                rnn = tf.keras.layers.Bidirectional(
                    tf.keras.layers.LSTM(hidden_size,
                                         return_sequences=False))
                self.rnn_layers.append(rnn)
            self.norm_layer = tf.keras.layers.LayerNormalization(epsilon=1e-9)
        self.project_layer = tf.keras.layers.Dense(len(word_index))

        self._set_inputs(
            tf.keras.backend.placeholder((None, None), dtype='string'))
Esempio n. 2
0
    def __init__(self,
                 encoder_path,
                 word_index,
                 index_word,
                 encoder_trainable,
                 hidden_size,
                 dropout,
                 n_layers,
                 rnn,
                 n_additional_features,
                 bidirection=True,
                 use_crf=True,
                 **kwargs):
        super(TaggerModel, self).__init__(**kwargs)
        self.to_token = ToTokens(word_index)
        self.to_tags = ToTags(index_word)
        self.encoder_layer = get_encoder(encoder_path, encoder_trainable)
        self.masking = tf.keras.layers.Masking()
        self.dropout_layer = tf.keras.layers.Dropout(dropout)
        self.n_additional_features = n_additional_features
        self.use_crf = use_crf
        self.rnn_layers = []
        for _ in range(n_layers):
            rnn_layer = rnn(hidden_size, return_sequences=True)
            if bidirection:
                rnn_layer = tf.keras.layers.Bidirectional(rnn_layer)
            self.rnn_layers.append(rnn_layer)
        self.project_layer = tf.keras.layers.Dense(len(word_index))
        if use_crf:
            self.crf_layer = CRF(len(word_index))

        self._set_inputs(
            tf.keras.backend.placeholder((None, None), dtype='string'))
Esempio n. 3
0
    def __init__(self,
                 encoder_path,
                 word_index,
                 index_word,
                 encoder_trainable=False,
                 hidden_size=768,
                 dropout=.25,
                 n_layers=1,
                 **kwargs):
        super(TaggerPointerModel, self).__init__(**kwargs)
        self.to_token = ToPointerTokens(word_index)
        self.to_tags = ToPointerTags(index_word)
        self.encoder_layer = get_encoder(encoder_path, encoder_trainable)
        self.masking = tf.keras.layers.Masking()
        self.dropout_layer = tf.keras.layers.Dropout(dropout)

        self.rnn_layers = []
        for _ in range(n_layers):
            rnn = tf.keras.layers.Bidirectional(
                tf.keras.layers.LSTM(hidden_size, return_sequences=True))
            self.rnn_layers.append(rnn)

        b_keys = sorted([x for x in word_index.keys() if x.startswith('B')])
        i_keys = sorted([x for x in word_index.keys() if x.startswith('I')])
        assert len(b_keys) == len(i_keys)

        self.project_hidden_layers = []
        self.norm_layers = []
        # 2 layers hidden
        for _ in range(2):
            layers = []
            norm_layers = []
            for _ in range(len(b_keys)):
                layers.append(
                    tf.keras.layers.Dense(hidden_size, activation='tanh'))
                norm_layers.append(
                    tf.keras.layers.LayerNormalization(epsilon=1e-9))
            self.project_hidden_layers.append(layers)
            self.norm_layers.append(norm_layers)

        self.project_begin_layers = []
        for _ in range(len(b_keys)):
            self.project_begin_layers.append(tf.keras.layers.Dense(2))

        self.project_end_layers = []
        for _ in range(len(i_keys)):
            self.project_end_layers.append(tf.keras.layers.Dense(2))

        self._set_inputs(
            tf.keras.backend.placeholder((None, None), dtype='string'))
Esempio n. 4
0
    def __init__(self,
                 encoder_path,
                 tag0_size,
                 tag1_size,
                 proj0_size,
                 proj1_size,
                 word_index,
                 index_word,
                 pos_word_index,
                 pos_index_word,
                 encoder_trainable=False,
                 rnn=tf.keras.layers.LSTM,
                 bidirection=True,
                 dropout=0.33,
                 n_layers=3,
                 hidden_size=400,
                 **kwargs):
        super(ParserModel, self).__init__(**kwargs)
        self.encoder_layer = get_encoder(encoder_path,
                                         encoder_trainable=encoder_trainable)
        self.masking = tf.keras.layers.Masking()

        self.dropout_layer = tf.keras.layers.Dropout(dropout)

        self.rnn_layers0 = []
        for _ in range(n_layers):
            rnn_layer = rnn(hidden_size, return_sequences=True)
            if bidirection:
                rnn_layer = tf.keras.layers.Bidirectional(rnn_layer)
            self.rnn_layers0.append(rnn_layer)

        self.rnn_layers1 = []
        for _ in range(n_layers):
            rnn_layer = rnn(hidden_size, return_sequences=True)
            if bidirection:
                rnn_layer = tf.keras.layers.Bidirectional(rnn_layer)
            self.rnn_layers1.append(rnn_layer)

        self.dep_mlp = tf.keras.layers.Dense(hidden_size)
        self.dep_concat = tf.keras.layers.Concatenate(axis=-1)
        self.dep_proj = tf.keras.layers.Dense(hidden_size)

        self.ph0 = tf.keras.layers.Dense(proj0_size)
        self.pd0 = tf.keras.layers.Dense(proj0_size)
        self.ph1 = tf.keras.layers.Dense(proj1_size)
        self.pd1 = tf.keras.layers.Dense(proj1_size)
        self.b0 = Biaffine(proj0_size, proj0_size, tag0_size)
        self.b1 = Biaffine(proj1_size, proj1_size, tag1_size)

        self.to_tokens = ToTokens(word_index)
        self.pos_to_tokens = PosToTokens(pos_word_index)

        self.to_tags = ToTags(index_word)
        self.pos_to_tags = PosToTags(pos_index_word)

        self.pos_mlp = tf.keras.layers.Dense(hidden_size)
        self.pos_proj = tf.keras.layers.Dense(len(pos_word_index))

        self.leaky_relu = tf.keras.layers.LeakyReLU(alpha=0.3)

        self._set_inputs(
            tf.keras.backend.placeholder((None, None), dtype='string'))