def main(args): trainning = GameArchive('../../data/train1.data') train_parser = ChunkParser(trainning.games) dataset = tf.data.Dataset.from_generator(train_parser.parse_chunk, output_types=(tf.string)) dataset = dataset.shuffle(1 << 18) dataset = dataset.map(_parse_function) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() testing = GameArchive('../../data/test1.data') test_parser = ChunkParser(testing.games) dataset = tf.data.Dataset.from_generator(test_parser.parse_chunk, output_types=(tf.string)) dataset = dataset.map(_parse_function) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess() tfprocess.init(dataset, train_iterator, test_iterator) if args: restore_file = args.pop(0) tfprocess.restore(restore_file) while True: tfprocess.process(BATCH_SIZE)
def main(args): train_data_prefix = args.pop(0) chunks = get_chunks(train_data_prefix) print("Found {0} chunks".format(len(chunks))) if not chunks: return parser = ChunkParser(chunks) dataset = tf.data.Dataset.from_generator(parser.parse_chunk, output_types=(tf.float32, tf.float32, tf.float32)) dataset = dataset.shuffle(65536) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(16) iterator = dataset.make_one_shot_iterator() next_batch = iterator.get_next() tfprocess = TFProcess(next_batch) if args: restore_file = args.pop(0) tfprocess.restore(restore_file) while True: tfprocess.process(BATCH_SIZE)
def main(cmd): cfg = yaml.safe_load(cmd.cfg.read()) print(yaml.dump(cfg, default_flow_style=False)) num_chunks = cfg['dataset']['num_chunks'] chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks) train_ratio = cfg['dataset']['train_ratio'] num_train = int(num_chunks * train_ratio) shuffle_size = cfg['training']['shuffle_size'] ChunkParser.BATCH_SIZE = cfg['training']['batch_size'] root_dir = os.path.join(cfg['training']['path'], cfg['name']) if not os.path.exists(root_dir): os.makedirs(root_dir) train_parser = ChunkParser(FileDataSrc(chunks[:num_train]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator(train_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() shuffle_size = int(shuffle_size * (1.0 - train_ratio)) test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator(test_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess(cfg) tfprocess.init(dataset, train_iterator, test_iterator) if os.path.exists(os.path.join(root_dir, 'checkpoint')): cp = get_checkpoint(root_dir) tfprocess.restore(cp) # Sweeps through all test chunks statistically num_evals = (num_chunks - num_train) * 10 // ChunkParser.BATCH_SIZE print("Using {} evaluation batches".format(num_evals)) for _ in range(cfg['training']['total_steps']): tfprocess.process(ChunkParser.BATCH_SIZE, num_evals) tfprocess.save_leelaz_weights(cmd.output) tfprocess.session.close() train_parser.shutdown() test_parser.shutdown()
def main(): if len(sys.argv) != 2: print("Usage: {} config.yaml".format(sys.argv[0])) return 1 cfg = yaml.safe_load(open(sys.argv[1], 'r').read()) print(yaml.dump(cfg, default_flow_style=False)) batch_size = cfg['training']['batch_size'] filename = os.path.join(cfg['dataset']['path'], 'train.bin') train_next_batch, parser = dataset_iterator(filename, batch_size) print("Creating trainingset from {}".format(filename)) num_eval = parser.num_samples() // batch_size print("Train epoch in {} steps".format(num_eval)) filename = os.path.join(cfg['dataset']['path'], 'test.bin') test_next_batch, parser = dataset_iterator(filename, batch_size) print("Creating testset from {}".format(filename)) num_eval = parser.num_samples() // batch_size print("Test epoch in {} steps".format(num_eval)) tfprocess = TFProcess(cfg, train_next_batch, test_next_batch, num_eval) root_dir = os.path.join(cfg['training']['path'], cfg['name']) if os.path.exists(os.path.join(root_dir, 'checkpoint')): checkpoint = parse.get_checkpoint(root_dir) tfprocess.restore(checkpoint) if not os.path.exists(root_dir): os.makedirs(root_dir) print("Created output directory: {}".format(root_dir)) while True: tfprocess.process(batch_size)
def main(args): train_data_prefix = args.pop(0) chunks = get_chunks(train_data_prefix) print("Found {0} chunks".format(len(chunks))) if not chunks: return parser = ChunkParser(chunks) run_test(parser) #benchmark(parser) dataset = tf.data.Dataset.from_generator( parser.parse_chunk, output_types=(tf.string)) dataset = dataset.shuffle(65536) dataset = dataset.map(_parse_function) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(16) iterator = dataset.make_one_shot_iterator() next_batch = iterator.get_next() tfprocess = TFProcess(next_batch) if args: restore_file = args.pop(0) tfprocess.restore(restore_file) while True: tfprocess.process(BATCH_SIZE)
def main(): parser = argparse.ArgumentParser( description='Train network from game data.') parser.add_argument("trainpref", help='Training file prefix', nargs='?', type=str) parser.add_argument("restorepref", help='Training snapshot prefix', nargs='?', type=str) parser.add_argument("--train", '-t', help="Training file prefix", type=str) parser.add_argument("--test", help="Test file prefix", type=str) parser.add_argument("--restore", type=str, help="Prefix of tensorflow snapshot to restore from") parser.add_argument("--logbase", default='leelalogs', type=str, help="Log file prefix (for tensorboard)") parser.add_argument("--sample", default=DOWN_SAMPLE, type=int, help="Rate of data down-sampling to use") args = parser.parse_args() train_data_prefix = args.train or args.trainpref restore_prefix = args.restore or args.restorepref training = get_chunks(train_data_prefix) if not args.test: # Generate test by taking 10% of the training chunks. random.shuffle(training) training, test = split_chunks(training, 0.1) else: test = get_chunks(args.test) if not training: print("No data to train on!") return print("Training with {0} chunks, validating on {1} chunks".format( len(training), len(test))) train_parser = ChunkParser(FileDataSrc(training), shuffle_size=1<<20, # 2.2GB of RAM. sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() test_parser = ChunkParser(FileDataSrc(test), shuffle_size=1<<19, sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() tfprocess = TFProcess() tfprocess.init(RAM_BATCH_SIZE, logbase=args.logbase, macrobatch=BATCH_SIZE // RAM_BATCH_SIZE) #benchmark1(tfprocess) if restore_prefix: tfprocess.restore(restore_prefix) tfprocess.process(train_parser, test_parser)
def main(cmd): cfg = yaml.safe_load(cmd.cfg.read()) print(yaml.dump(cfg, default_flow_style=False)) num_chunks = cfg['dataset']['num_chunks'] chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks) train_ratio = cfg['dataset']['train_ratio'] num_train = int(num_chunks*train_ratio) shuffle_size = cfg['training']['shuffle_size'] ChunkParser.BATCH_SIZE = cfg['training']['batch_size'] root_dir = os.path.join(cfg['training']['path'], cfg['name']) if not os.path.exists(root_dir): os.makedirs(root_dir) train_parser = ChunkParser(FileDataSrc(chunks[:num_train]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator( train_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() shuffle_size = int(shuffle_size*(1.0-train_ratio)) test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator( test_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess(cfg) tfprocess.init(dataset, train_iterator, test_iterator) if os.path.exists(os.path.join(root_dir, 'checkpoint')): cp = get_checkpoint(root_dir) tfprocess.restore(cp) # Sweeps through all test chunks statistically num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE print("Using {} evaluation batches".format(num_evals)) for _ in range(cfg['training']['total_steps']): tfprocess.process(ChunkParser.BATCH_SIZE, num_evals) tfprocess.save_leelaz_weights(cmd.output) tfprocess.session.close() train_parser.shutdown() test_parser.shutdown()
def main(): if len(sys.argv) != 2: print("Usage: {} config.yaml".format(sys.argv[0])) return 1 cfg = yaml.safe_load(open(sys.argv[1], 'r').read()) print(yaml.dump(cfg, default_flow_style=False)) num_chunks = cfg['dataset']['num_chunks'] chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks) num_train = int(num_chunks*cfg['dataset']['train_ratio']) shuffle_size = cfg['training']['shuffle_size'] ChunkParser.BATCH_SIZE = cfg['training']['batch_size'] root_dir = os.path.join(cfg['training']['path'], cfg['name']) if not os.path.exists(root_dir): os.makedirs(root_dir) #bench_parser = ChunkParser(FileDataSrc(chunks[:1000]), shuffle_size=1<<14, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) #benchmark(bench_parser) train_parser = ChunkParser(FileDataSrc(chunks[:num_train]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) #benchmark(train_parser) dataset = tf.data.Dataset.from_generator( train_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator( test_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess(cfg) tfprocess.init(dataset, train_iterator, test_iterator) if os.path.exists(os.path.join(root_dir, 'checkpoint')): cp = get_checkpoint(root_dir) tfprocess.restore(cp) # Sweeps through all test chunks statistically num_evals = int(round(((num_chunks-num_train) * (200 / SKIP)) / ChunkParser.BATCH_SIZE)) print("Using {} evaluation batches".format(num_evals)) # while True: for _ in range(cfg['training']['total_steps']): tfprocess.process(ChunkParser.BATCH_SIZE, num_evals)
def main(args): train_data_prefix = args.pop(0) chunks = get_chunks(train_data_prefix) print("Found {0} chunks".format(len(chunks))) if not chunks: return # The following assumes positions from one game are not # spread through chunks. random.shuffle(chunks) training, test = split_chunks(chunks, 0.1) print("Training with {0} chunks, validating on {1} chunks".format( len(training), len(test))) train_parser = ChunkParser(FileDataSrc(training), shuffle_size=1 << 19, sample=DOWN_SAMPLE, batch_size=BATCH_SIZE) #benchmark(train_parser) dataset = tf.data.Dataset.from_generator(train_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(_parse_function) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() test_parser = ChunkParser(FileDataSrc(test), shuffle_size=1 << 19, sample=DOWN_SAMPLE, batch_size=BATCH_SIZE) dataset = tf.data.Dataset.from_generator(test_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(_parse_function) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess() tfprocess.init(dataset, train_iterator, test_iterator) #benchmark1(tfprocess) if args: restore_file = args.pop(0) tfprocess.restore(restore_file) while True: tfprocess.process(BATCH_SIZE)
def main(args): train_data_prefix = args.pop(0) chunks = get_chunks(train_data_prefix) print("Found {0} chunks".format(len(chunks))) if not chunks: return # The following assumes positions from one game are not # spread through chunks. random.shuffle(chunks) training, test = split_chunks(chunks, 0.1) print("Training with {0} chunks, validating on {1} chunks".format( len(training), len(test))) #run_test(parser) #benchmark(parser) train_parser = ChunkParser(training) dataset = tf.data.Dataset.from_generator(train_parser.parse_chunk, output_types=(tf.string)) dataset = dataset.shuffle(1 << 18) dataset = dataset.map(_parse_function) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() test_parser = ChunkParser(test) dataset = tf.data.Dataset.from_generator(test_parser.parse_chunk, output_types=(tf.string)) dataset = dataset.map(_parse_function) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess() tfprocess.init(dataset, train_iterator, test_iterator) if args: restore_file = args.pop(0) tfprocess.restore(restore_file) for _ in range(12001): tfprocess.process(BATCH_SIZE) for x in train_parser.mp_instances: x.terminate() x.join() os.killpg(0, signal.SIGTERM)
def main(args): chunks = latest_chunks() parser, next_batch = chunks2batches(chunks) tfprocess = TFProcess(next_batch) if args: restore_file = args.pop(0) print("Restoring weights ....") tfprocess.restore(restore_file) print("Training starts ....") while True: change_data, run_val = tfprocess.process() if change_data: chunks = latest_chunks() parser.chunk_switch(chunks) if run_val: best_net = leela_conf.SAVE_DIR + "/best.txt" last_net = leela_conf.SAVE_DIR + "/latest.txt" cmd = leela_conf.VALIDATION_COMMAND % \ (last_net, best_net) print(cmd) subprocess.call(cmd.split(" ")) #, stdout=subprocess.PIPE) with open(leela_conf.VALIDATION_LOG, "r") as f: better = int(f.readlines()[-1].split("\t")[0]) if better: print("---------------- Better Network Found! --------------") copy2(last_net, best_net) else: print("------------- Checkout best net so far. -------------") tfprocess.replace_weights(get_weights(best_net))
def main(): if len(sys.argv) != 2: print("Usage: {} config.yaml".format(sys.argv[0])) return 1 cfg = yaml.safe_load(open(sys.argv[1], 'r').read()) print(yaml.dump(cfg, default_flow_style=False)) chunks = get_chunks(cfg['dataset']['input']) print("Found {0} chunks".format(len(chunks))) if not chunks: return parser = ChunkParser(chunks) run_test(parser) #benchmark(parser) dataset = tf.data.Dataset.from_generator(parser.parse_chunk, output_types=(tf.string)) dataset = dataset.shuffle(65536) dataset = dataset.map(_parse_function) dataset = dataset.batch(cfg['training']['batch_size']) dataset = dataset.prefetch(16) iterator = dataset.make_one_shot_iterator() next_batch = iterator.get_next() tfprocess = TFProcess(cfg, next_batch) root_dir = os.path.join(cfg['training']['path'], cfg['name']) if os.path.exists(os.path.join(root_dir, 'checkpoint')): checkpoint = get_checkpoint(root_dir) tfprocess.restore(checkpoint) while True: tfprocess.process(cfg['training']['batch_size'])
def main(cmd): cfg = yaml.safe_load(cmd.cfg.read()) print(yaml.dump(cfg, default_flow_style=False)) num_chunks = cfg['dataset']['num_chunks'] chunks = get_latest_chunks(cfg['dataset']['input'], num_chunks) train_ratio = cfg['dataset']['train_ratio'] num_train = int(num_chunks*train_ratio) shuffle_size = cfg['training']['shuffle_size'] ChunkParser.BATCH_SIZE = cfg['training']['batch_size'] root_dir = os.path.join(cfg['training']['path'], cfg['name']) if not os.path.exists(root_dir): os.makedirs(root_dir) train_parser = ChunkParser(FileDataSrc(chunks[:num_train]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator( train_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) train_iterator = dataset.make_one_shot_iterator() shuffle_size = int(shuffle_size*(1.0-train_ratio)) test_parser = ChunkParser(FileDataSrc(chunks[num_train:]), shuffle_size=shuffle_size, sample=SKIP, batch_size=ChunkParser.BATCH_SIZE) dataset = tf.data.Dataset.from_generator( test_parser.parse, output_types=(tf.string, tf.string, tf.string)) dataset = dataset.map(ChunkParser.parse_function) dataset = dataset.prefetch(4) test_iterator = dataset.make_one_shot_iterator() tfprocess = TFProcess(cfg) tfprocess.init(dataset, train_iterator, test_iterator) if os.path.exists(os.path.join(root_dir, 'checkpoint')): cp = get_checkpoint(root_dir) tfprocess.restore(cp) # Sweeps through all test chunks statistically num_evals = (num_chunks-num_train)*10 // ChunkParser.BATCH_SIZE print("Using {} evaluation batches".format(num_evals)) for _ in range(cfg['training']['total_steps']): tfprocess.process(ChunkParser.BATCH_SIZE, num_evals) tfprocess.save_leelaz_weights('/tmp/weights.txt') with open('/tmp/weights.txt', 'rb') as f: m = hashlib.sha256() w = f.read() m.update(w) digest = m.hexdigest() filename = '/tmp/{}.gz'.format(digest) with gzip.open(filename, 'wb') as f: f.write(w) if cmd.upload: metadata = {'training_id':'1', 'layers':cfg['model']['residual_blocks'], 'filters':cfg['model']['filters']} print("\nUploading `{}'...".format(digest[:8]), end='') upload(cmd.upload, metadata, filename) print("[done]\n") else: print("\nStored `{}'\n".format(filename))
def main(): parser = argparse.ArgumentParser( description='Train network from game data.') parser.add_argument("blockspref", help="Number of blocks", nargs='?', type=int) parser.add_argument("filterspref", help="Number of filters", nargs='?', type=int) parser.add_argument("trainpref", help='Training file prefix', nargs='?', type=str) parser.add_argument("restorepref", help='Training snapshot prefix', nargs='?', type=str) parser.add_argument("--blocks", '-b', help="Number of blocks", type=int) parser.add_argument("--filters", '-f', help="Number of filters", type=int) parser.add_argument("--train", '-t', help="Training file prefix", type=str) parser.add_argument("--test", help="Test file prefix", type=str) parser.add_argument("--restore", type=str, help="Prefix of tensorflow snapshot to restore from") parser.add_argument( "--logbase", default='leelalogs', type=str, help="Log file prefix (for tensorboard) (default: %(default)s)") parser.add_argument( "--sample", default=DOWN_SAMPLE, type=int, help="Rate of data down-sampling to use (default: %(default)d)") args = parser.parse_args() blocks = args.blocks or args.blockspref filters = args.filters or args.filterspref train_data_prefix = args.train or args.trainpref restore_prefix = args.restore or args.restorepref if not blocks or not filters: print("Must supply number of blocks and filters") return training = get_chunks(train_data_prefix) if not args.test: # Generate test by taking 10% of the training chunks. random.shuffle(training) print("here1") training, test = split_chunks(training, 0.1) else: test = get_chunks(args.test) if not training: print("No data to train on!") return print("Training with {0} chunks, validating on {1} chunks".format( len(training), len(test))) train_parser = ChunkParser( FileDataSrc(training), shuffle_size=1 << 20, # 2.2GB of RAM. sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() test_parser = ChunkParser(FileDataSrc(test), shuffle_size=1 << 19, sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() tfprocess = TFProcess(blocks, filters) tfprocess.init(RAM_BATCH_SIZE, logbase=args.logbase, macrobatch=BATCH_SIZE // RAM_BATCH_SIZE) #benchmark1(tfprocess) if restore_prefix: tfprocess.restore(restore_prefix) tfprocess.process(train_parser, test_parser)
def main(): parser = argparse.ArgumentParser( description='Train network from game data.') parser.add_argument("blockspref", help="Number of blocks", nargs='?', type=int) parser.add_argument("filterspref", help="Number of filters", nargs='?', type=int) parser.add_argument("trainpref", help='Training file prefix', nargs='?', type=str) parser.add_argument("restorepref", help='Training snapshot prefix', nargs='?', type=str) parser.add_argument("--blocks", '-b', help="Number of blocks", type=int) parser.add_argument("--filters", '-f', help="Number of filters", type=int) parser.add_argument("--train", '-t', help="Training file prefix", type=str) parser.add_argument("--test", help="Test file prefix", type=str) parser.add_argument("--restore", type=str, help="Prefix of tensorflow snapshot to restore from") parser.add_argument("--logbase", default='leelalogs', type=str, help="Log file prefix (for tensorboard) (default: %(default)s)") parser.add_argument("--sample", default=DOWN_SAMPLE, type=int, help="Rate of data down-sampling to use (default: %(default)d)") parser.add_argument("--bufferbits", default=TRAIN_SHUFFLE_BITS, type=int, help="Train shuffle-buffer size in bits (default: %(default)d)") parser.add_argument("--rate", default=LEARN_RATE, type=float, help="Learning rate (default: %(default)f)") parser.add_argument("--steps", default=TRAINING_STEPS, type=int, help="Training step before writing a network (default: %(default)d)") parser.add_argument("--maxsteps", default=MAX_TRAINING_STEPS, type=int, help="Terminates after this many steps (default: %(default)d)") parser.add_argument("--maxkeep", default=MAX_SAVER_TO_KEEP, type=int, help="Keeps meta files for at most this many networks (default: %(default)d)") parser.add_argument("--policyloss", default=POLICY_LOSS_WT, type=float, help="Coefficient for policy term in loss function (default: %(default)f)") parser.add_argument("--mseloss", default=MSE_LOSS_WT, type=float, help="Coefficient for mse term in loss function (default: %(default)f)") parser.add_argument("--regloss", default=REG_LOSS_WT, type=float, help="Coefficient for regularizing term in loss function (default: %(default)f)") args = parser.parse_args() blocks = args.blocks or args.blockspref filters = args.filters or args.filterspref train_data_prefix = args.train or args.trainpref restore_prefix = args.restore or args.restorepref if not blocks or not filters: print("Must supply number of blocks and filters") return training = get_chunks(train_data_prefix) if not args.test: # Generate test by taking 10% of the training chunks. random.shuffle(training) training, test = split_chunks(training, 0.1) else: test = get_chunks(args.test) if not training: print("No data to train on!") return print("Training with {0} chunks, validating on {1} chunks".format( len(training), len(test))) train_parser = ChunkParser(FileDataSrc(training), shuffle_size=1<<args.bufferbits, # was 20 -- 2.2GB of RAM. sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() test_parser = ChunkParser(FileDataSrc(test), shuffle_size=1<<(args.bufferbits-3), # was 19 sample=args.sample, batch_size=RAM_BATCH_SIZE).parse() tfprocess = TFProcess(blocks, filters, args.rate, args.steps, args.maxsteps, args.maxkeep, args.policyloss, args.mseloss, args.regloss) tfprocess.init(RAM_BATCH_SIZE, logbase=args.logbase, macrobatch=BATCH_SIZE // RAM_BATCH_SIZE) #benchmark1(tfprocess) if restore_prefix: tfprocess.restore(restore_prefix) tfprocess.process(train_parser, test_parser)