def __init__(self, name): # Call parent's constructor Net.__init__(self, name) # Attributes self._inter_type = self.RECURRENT self._train_state_buffer = None self._eval_state_buffer = None self._state_size = None self._init_state = None self._weights = None self._bias = None self._weight_initializer = None self._bias_initializer = None # For real-time training TODO: BETA self.repeater_tensors = None # registered in sub-classes self._grad_tensors = None self._new_state_tensor = None # self._gradient_buffer_placeholder = None self._gradient_buffer_array = None self._custom_vars = None # Gate activations should be registered here self._gate_dict = OrderedDict()
def __init__(self, name): # Call parent's constructor Net.__init__(self, name) # Attributes self._inter_type = self.RECURRENT self._state_array = None self._state_size = None self._init_state = None self._kernel = None self._bias = None self._weight_initializer = None self._bias_initializer = None
def __init__(self, mark=None, **kwargs): # Call parent's initializer Model.__init__(self, mark) Net.__init__(self, 'Bamboo_Broad_Net', inter_type=pedia.fork) assert self._inter_type == pedia.fork self.outputs = None # Private fields self._losses = [] self._metrics = [] self._train_ops = [] self._var_list = [] self._output_list = [] self._branch_index = 0 self._identity_initial = kwargs.get('ientity', False)
def __init__(self, mark=None): Model.__init__(self, mark) Net.__init__(self, 'FeedforwardNet') self.superior = self self._default_net = self
def __init__(self, mark=None): Model.__init__(self, mark) Net.__init__(self, 'FeedforwardNet') self.outputs = None