Esempio n. 1
0
def test_significant_digits():
    s = significant_digits(0.637282, 1e-3)
    assert s[0] == "0.6373"

    s = significant_digits(0.9837473385, 0.000065323)
    assert s[0] == "0.98375"
    assert s[1] == "0.00007"

    s = significant_digits(0.0338577, 0.0015473)
    assert s[0] == "0.0339"
    assert s[1] == "0.0015"
Esempio n. 2
0
def calc_beta_inst(name, position, results_df, magnet1_df, magnet2_df,
                   kmod_input_params):
    betas = np.zeros((2, 2))
    sign = np.array([[0, 0], [1, 0], [-1, 0], [0, 1], [0, -1]])
    for i, plane in enumerate(PLANES):
        waist = results_df.loc[:, f"{WAIST}{plane}"].values
        if magnet1_df.headers['POLARITY'] == 1 and magnet2_df.headers[
                'POLARITY'] == -1:
            waist = -waist
        if plane == 'Y':
            waist = -waist

        beta = propagate_beta_in_drift(
            (results_df.loc[:, f"{BETA}{WAIST}{plane}"].values + sign[:, 0] *
             results_df.loc[:, f"{ERR}{BETA}{WAIST}{plane}"].values),
            ((waist - position) +
             sign[:, 1] * results_df.loc[:, f"{ERR}{WAIST}{plane}"].values))
        beta_err = get_err(beta[1::2] - beta[0])
        if kmod_input_params.no_sig_digits:
            betas[i, 0], betas[i, 1] = beta[0], beta_err
        else:
            betas[i, 0], betas[i, 1] = tfstools.significant_digits(
                beta[0], beta_err, return_floats=True)

    return name, betas[0, 0], betas[0, 1], betas[1, 0], betas[1, 1]
Esempio n. 3
0
def calc_betastar(kmod_input_params, results_df, l_star):

    sign = return_sign_for_err(2)

    for plane in PLANES:
        betastar = propagate_beta_in_drift(
            (results_df.loc[:, f"{BETA}{WAIST}{plane}"].values + sign[:, 0] *
             results_df.loc[:, f"{ERR}{BETA}{WAIST}{plane}"].values),
            (results_df.loc[:, f"{WAIST}{plane}"].values +
             sign[:, 1] * results_df.loc[:, f"{ERR}{WAIST}{plane}"].values))
        betastar_err = get_err(betastar[1::2] - betastar[0])

        if kmod_input_params.no_sig_digits:
            results_df[f"{BETA}{STAR}{plane}"], results_df[
                f"{ERR}{BETA}{STAR}{plane}"] = (betastar[0], betastar_err)
        else:
            results_df[f"{BETA}{STAR}{plane}"], results_df[
                f"{ERR}{BETA}{STAR}{plane}"] = tfstools.significant_digits(
                    betastar[0], betastar_err, return_floats=True)

    # reindex df to put betastar first
    cols = results_df.columns.tolist()
    cols = [cols[0]] + cols[-4:] + cols[1:-4]
    results_df = results_df.reindex(columns=cols)

    for plane in PLANES:
        results_df[f"{PHASEADV}{plane}"], results_df[
            f"{ERR}{PHASEADV}{plane}"] = phase_adv_from_kmod(
                l_star, betastar[0], betastar_err,
                results_df.loc[:, f"{WAIST}{plane}"].values,
                results_df.loc[:, f"{ERR}{WAIST}{plane}"].values)

    return results_df
Esempio n. 4
0
def test_significant_digits():
    s = significant_digits(0.637282, 1e-3)
    assert s[0] == "0.6373"

    s = significant_digits(0.9837473385, 0.000065323)
    assert s[0] == "0.98375"
    assert s[1] == "0.00007"

    s = significant_digits(0.0338577, 0.0015473)
    assert s[0] == "0.0339"
    assert s[1] == "0.0015"

    s = significant_digits(0.0338577, 0.0015473, return_floats=True)
    assert s[0] == 0.0339
    assert s[1] == 0.0015

    with pytest.raises(ValueError):
        s = significant_digits(0.0338577, 0.0)
def _get_scaled_labels(val, std, scale):
    scaled_vas, scaled_std = val*scale, std*scale
    if abs(scaled_std) > 1 or scaled_std == 0:
        return f'{int(round(scaled_vas)):d}', f'{int(round(scaled_std)):d}'
    return significant_digits(scaled_vas, scaled_std)