Esempio n. 1
0
    def __init__(self, token, ip):
        self.ip = ip

        # TODO: Set this threshold to whatever you want
        self.temperature_threshold_C = 38.5  # In degrees C

        # Initialize the trueface SDK using hte lite model
        # We will be using facial recognition to ensure we only send 1 notification per identity
        # So that if a sick person stands infront of the camera, we only send 1 notification and not countless
        options = tfsdk.ConfigurationOptions()
        options.fr_model = tfsdk.FACIALRECOGNITIONMODEL.LITE
        self.sdk = tfsdk.SDK(options)

        is_valid = self.sdk.set_license(token)
        if (is_valid == False):
            print("Invalid License Provided")
            quit()

        self.faceprint = {}

        # Set up email stuff
        # For this demo, we will be using the gmail smtp server
        self.port = 465  # For SSL
        self.smtp_server = "smtp.gmail.com"

        # TODO: Enter the sender gmail account
        # "Allow less secure apps" must be turned ON https://myaccount.google.com/lesssecureapps
        self.sender_email = "*****@*****.**"

        # TODO: Enter the recipient address
        self.receiver_email = "*****@*****.**"

        # TODO: Enter your gmail account password (corresponding to the sender_email account)
        self.password = "******"
Esempio n. 2
0
    def __init__(self, token, ip):
        self.ip = ip

        # TODO: Set this threshold to whatever you want
        self.temperature_threshold_C = 38.5 # In degrees C

        # Initialize the trueface SDK using hte lite model
        # We will be using facial recognition to ensure we only send 1 notification per identity
        # So that if a sick person stands infront of the camera, we only send 1 notification and not countless
        options = tfsdk.ConfigurationOptions()
        options.fr_model = tfsdk.FACIALRECOGNITIONMODEL.LITE
        self.sdk = tfsdk.SDK(options)

        is_valid = self.sdk.set_license(token)
        if (is_valid == False):
            print("Invalid License Provided")
            quit() 

        self.faceprint = {}

        # Set up text message stuff

        # Your Account Sid and Auth Token from twilio.com/console
        # DANGER! This is insecure. See http://twil.io/secure
        account_sid = 'ACe275517637075b7fb777f44f7b549efc'
        auth_token = 'your_auth_token'
        self.client = Client(account_sid, auth_token)

        self.from_number = '+15017122661'
        self.to_number = '+15558675310'

def usage():
    print("Usage: {} <collection folder name> <input video filename>".format(
        sys.argv[0]))


if len(sys.argv) != 3:
    usage()
    sys.exit(1)
collection_folder = sys.argv[1]
filepath = sys.argv[2]
if filepath.isdigit():
    filepath = int(filepath)

options = tfsdk.ConfigurationOptions()
# Can set configuration options here
# ex:
#options.smallest_face_height = -1
options.fd_mode = tfsdk.FACEDETECTIONMODE.VERSATILE
# options.fd_filter = tfsdk.FACEDETECTIONFILTER.BALANCED
options.fr_model = tfsdk.FACIALRECOGNITIONMODEL.FULL
options.models_path = '/home/seelaman/Workspace/trueface/trueface.base/tfsdk_python3.7.gpu/trueface_sdk'
options.dbms = tfsdk.DATABASEMANAGEMENTSYSTEM.SQLITE

# Use the accurate object detector
#options.obj_model = tfsdk.OBJECTDETECTIONMODEL.ACCURATE

sdk = tfsdk.SDK(options)

# TODO: replace the string with your license code.
    def identifyTemplate(self, templateQueue, token):
        # Initialize the trueface SDK
        # Be sure to use the same SDK options as the camera
        # Since we will be using the GET /fr-template-lite endpoint, we will initialize the SDK using the lite model
        options = tfsdk.ConfigurationOptions()
        options.fr_model = tfsdk.FACIALRECOGNITIONMODEL.LITE
        options.dbms = tfsdk.DATABASEMANAGEMENTSYSTEM.NONE # We will NOT be writing template to disk for this demo.
        options.smallest_face_height = -1 # https://reference.trueface.ai/cpp/dev/latest/py/general.html#tfsdk.ConfigurationOptions
        sdk = tfsdk.SDK(options)

        is_valid = sdk.set_license(token)
        if (is_valid == False):
            print("Invalid License Provided")
            quit() 


        # At this point, we can either load an existing trueface database & collection, or create a new one and populate it with data
        # For the sake of this demo, we will create a new collection (memory only, meaning data will not persist after app shuts down) 
        
        # If we are using a database backend, need to first call create_database_connection
        # Since we are using DATABASEMANAGEMENTSYSTEM.NONE this is not necessary
        # For more aobut 1 to N, please refer to: https://reference.trueface.ai/cpp/dev/latest/usage/identification.html

        # Create a new collection
        res = sdk.create_load_collection("my_collection")
        if (res != tfsdk.ERRORCODE.NO_ERROR):
            print("Unable to create collection")
            quit()

        # Some identities to populate into our collection
        # TODO: Can add images of yourself here
        image_identities = [
            ("../../cpp_sdk/images/armstrong/armstrong1.jpg", "Armstrong"),
            ("../../cpp_sdk/images/armstrong/armstrong2.jpg", "Armstrong"), # Can add the same identity more than once
            ("../../cpp_sdk/images/obama/obama1.jpg", "Obama")
        ]

        # Generate templates, enroll in our collection
        for path, identity in image_identities:
            print("Processing image:", path, "with identity:", identity)
            # Generate a template for each image
            res = sdk.set_image(path)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to set image at path:", path)
                continue

            # Detect the largest face in the image
            found, faceBoxAndLandmarks = sdk.detect_largest_face()
            if found == False:
                print("No face detected in image:", path)
                continue

            # We want to only enroll high quality images into the database / collection
            # Therefore, ensure that the face height is at least 100px
            faceHeight = faceBoxAndLandmarks.bottom_right.y - faceBoxAndLandmarks.top_left.y
            print("Face height:", faceHeight, "pixels")

            if faceHeight < 100:
                print("The face is too small in the image for a high quality enrollment.")
                continue

            # Get the aligned chip so we can compute the image quality
            face = sdk.extract_aligned_face(faceBoxAndLandmarks)

            # Compute the image quality score
            res, quality = sdk.estimate_face_image_quality(face)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("There was an error computing the image quality")
                continue

            # Ensure the image quality is above a threshold (TODO: adjust this threshold based on your use case).
            print("Face quality:", quality)
            if quality < 0.8:
                print("The image quality is too poor for enrollment")
                continue

            # As a final check, we can check the orientation of the head and ensure that it is facing forward
            # To see the effect of yaw and pitch on match score, refer to: https://reference.trueface.ai/cpp/dev/latest/py/face.html#tfsdk.SDK.estimate_head_orientation

            res, yaw, pitch, roll = sdk.estimate_head_orientation(faceBoxAndLandmarks)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to compute head orientation")

            print("Head orientation, Yaw:", yaw * 180 / 3.14, ", Pitch:", pitch * 180 / 3.14, ", Roll:", roll * 180 / 3.14, "degrees")
            # TODO: Can filter out images with extreme yaw and pitch here

            # Now that we have confirmed the images are high quality, generate a template from that image
            res, faceprint = sdk.get_face_feature_vector(face)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("There was an error generating the faceprint")
                continue

            # Enroll the feature vector into the collection
            res, UUID = sdk.enroll_template(faceprint, identity)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to enroll feature vector")
                continue

            # TODO: Can store the UUID for later use
            print("Success, enrolled template with UUID:", UUID)
            print("--------------------------------------------")

        while True:
            # TODO: If the queue get's too backed up, can remove some items without processing
            template = templateQueue.get()
            errorcode, probe_faceprint = tfsdk.SDK.json_to_faceprint(template)
            if (errorcode != tfsdk.ERRORCODE.NO_ERROR):
                print("There was an error decoding the json to a faceprint")
                continue
            # Now run 1 to N identification
            ret_code, found, candidate = sdk.identify_top_candidate(probe_faceprint)
            if ret_code != tfsdk.ERRORCODE.NO_ERROR:
                print("Something went wrong!")
            elif found == True:
                print("Found match with identity:", candidate.identity)
                print("Match probability:", candidate.match_probability)
            else:
                print("Unable to find match")
            print(" ")
Esempio n. 5
0
    def __init__(self, token, ip):
        self.ip = ip

        # Initialize the trueface SDK
        # Be sure to use the same SDK options as the camera
        # Since we will be using the GET /fr-template-lite endpoint, we will initialize the SDK using the lite model
        options = tfsdk.ConfigurationOptions()
        options.fr_model = tfsdk.FACIALRECOGNITIONMODEL.LITE
        options.dbms = tfsdk.DATABASEMANAGEMENTSYSTEM.NONE  # We will NOT be writing template to disk for this demo.
        options.smallest_face_height = -1  # https://reference.trueface.ai/cpp/dev/latest/py/general.html#tfsdk.ConfigurationOptions
        self.sdk = tfsdk.SDK(options)

        is_valid = self.sdk.set_license(token)
        if (is_valid == False):
            print("Invalid License Provided")
            quit()

        # At this point, we can either load an existing trueface database & collection, or create a new one and populate it with data
        # For the sake of this demo, we will create a new collection (memory only, meaning data will not persist after app shuts down)

        # If we are using a database backend, need to first call create_database_connection
        # Since we are using DATABASEMANAGEMENTSYSTEM.NONE this is not necessary
        # For more aobut 1 to N, please refer to: https://reference.trueface.ai/cpp/dev/latest/usage/identification.html

        # Create a new collection
        res = self.sdk.create_load_collection("my_collection")
        if (res != tfsdk.ERRORCODE.NO_ERROR):
            print("Unable to create collection")
            quit()

        # Some identities to populate into our collection
        # TODO: Can add images of yourself here
        image_identities = [
            ("../../cpp_sdk/images/armstrong/armstrong1.jpg", "Armstrong"),
            ("../../cpp_sdk/images/armstrong/armstrong2.jpg",
             "Armstrong"),  # Can add the same identity more than once
            ("../../cpp_sdk/images/obama/obama1.jpg", "Obama")
        ]

        # Generate templates, enroll in our collection
        for path, identity in image_identities:
            # Generate a template for each image
            res = self.sdk.set_image(path)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to set image at path:", path)
                quit()

            # Extract the feature vector
            res, v = self.sdk.get_largest_face_feature_vector()
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to generate feature vector")
                quit()

            # Enroll the feature vector into the collection
            res, UUID = self.sdk.enroll_template(v, identity)
            if (res != tfsdk.ERRORCODE.NO_ERROR):
                print("Unable to enroll feature vector")
                quit()

            # TODO: Can store the UUID for later use
            print("Success, enrolled template with UUID:", UUID)