Esempio n. 1
0
    def get_optuna_conext(cls, training_name: str, trial: Trial) -> Context:
        """トライアルの開始準備をする。Objective関数の最初に呼び出してください。

        Parameters:
            trial : 開始するトライアルオブジェクト
        
        """
        print("get_context", trial)
        cls.trial = trial
        context = Context.init_context(training_name)
        context[Context.OPTUNA] = True
        context[Context.OPTUNA_TRIAL] = trial
        return context
Esempio n. 2
0
def pretext_dataset(dataset:tf.data.Dataset, start_label:int)->tf.data.Dataset:
    filtered = dataset.filter(lambda data:data['label'] >= start_label)

    def supervised_transform(data):
        image = data['image']
        image = tf.cast(image, tf.float32)
        image = image / 255.0


    def random_transform(image):
        pass


if __name__ == '__main__':

    context = Context.init_context(TRAINING_NAME='')
    # ENABLE_SUSPEND_RESUME_TRAINING()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 2
    SHUFFLE_SIZE = 1000






    # if IS_SUSPEND_RESUME_TRAIN() == True and IS_ON_COLABOLATORY_WITH_GOOGLE_DRIVE()== True:
    
Esempio n. 3
0
from tftk.image.dataset import Mnist
from tftk.image.dataset import ImageDatasetUtil
from tftk.image.model.classification import SimpleClassificationModel
from tftk.callback import CallbackBuilder
from tftk.optimizer import OptimizerBuilder
from tftk import Context

from tftk.train.image import ImageTrain

from tftk import ENABLE_SUSPEND_RESUME_TRAIN, IS_SUSPEND_RESUME_TRAIN, ResumeExecutor

if __name__ == '__main__':

    context = Context.init_context(
        TRAINING_NAME="20200519141141")  #   .TRAINING_NAME:})
    ENABLE_SUSPEND_RESUME_TRAIN()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 20
    SHUFFLE_SIZE = 1000

    train, train_len = Mnist.get_train_dataset()
    validation, validation_len = Mnist.get_test_dataset()
    train = train.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    validation = validation.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop")
    model = SimpleClassificationModel.get_model(input_shape=(IMAGE_SIZE,
Esempio n. 4
0
from tftk.image.dataset import Mnist
from tftk.image.dataset import ImageDatasetUtil
from tftk.image.model.classification import SimpleClassificationModel
from tftk.callback import CallbackBuilder
from tftk.optimizer import OptimizerBuilder
from tftk import Context

from tftk.train.image import ImageTrain

from tftk import ENABLE_SUSPEND_RESUME_TRAINING, ResumeExecutor

if __name__ == '__main__':

    context = Context.init_context(TRAINING_NAME='mnist_y')
    # ENABLE_SUSPEND_RESUME_TRAINING()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 2
    SHUFFLE_SIZE = 1000

    # if IS_SUSPEND_RESUME_TRAIN() == True and IS_ON_COLABOLATORY_WITH_GOOGLE_DRIVE()== True:

    train, train_len = Mnist.get_train_dataset()
    validation, validation_len = Mnist.get_test_dataset()

    train = train.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    validation = validation.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
Esempio n. 5
0
from tftk.image.dataset import Mnist
from tftk.image.dataset import ImageDatasetUtil
from tftk.image.model.classification import SimpleClassificationModel
from tftk.callback import CallbackBuilder
from tftk.optimizer import OptimizerBuilder
from tftk import Context

from tftk.train.image import ImageTrain

from tftk import ENABLE_SUSPEND_RESUME_TRAIN, IS_SUSPEND_RESUME_TRAIN, ResumeExecutor

if __name__ == '__main__':

    context = Context.init_context(
        TRAINING_BASE_DIR="tmp",
        TRAINING_NAME="resume_test"
    )

    ENABLE_SUSPEND_RESUME_TRAIN()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 3
    SHUFFLE_SIZE = 1000
    BASEDIR = "./tmp"
    TRAIN_NAME = "resume_test"

    # if IS_SUSPEND_RESUME_TRAIN() == True and IS_ON_COLABOLATORY_WITH_GOOGLE_DRIVE()== True:
    
Esempio n. 6
0
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import tftk
from tftk.image.dataset import Food1o1
from tftk.image.dataset import ImageDatasetUtil
from tftk.image.model import KerasResNet50V2
from tftk.train.image import ImageTrain
from tftk.image.augument import ImageAugument
from tftk.callback import CallbackBuilder
from tftk.optimizer import OptimizerBuilder
from tftk import Context

if __name__ == '__main__':

    context = Context.init_context(TRAINING_BASE_DIR="tmp",
                                   TRAINING_NAME="food101")

    tftk.USE_MIXED_PRECISION()
    BATCH_SIZE = 64

    CLASS_NUM = 101
    IMAGE_SIZE = 224
    CHANNELS = 3
    EPOCHS = 100
    SHUFFLE_SIZE = 1000

    train, train_len = Food1o1.get_train_dataset()
    validation, validation_len = Food1o1.get_validation_dataset()

    train = train.map(ImageDatasetUtil.resize_with_crop_or_pad(
        IMAGE_SIZE, IMAGE_SIZE),
Esempio n. 7
0
from tftk.image.model import SimpleClassificationModel
from tftk.train.image import ImageTrain
from tftk.callback import CallbackBuilder
from tftk.optimizer import OptimizerBuilder

if __name__ == '__main__':

    CLASS_NUM = 10
    IMAGE_SIZE = 150
    IMAGE_CHANNELS = 3
    EPOCHS = 100
    BATCH_SIZE = 100

    tftk.ENABLE_MIXED_PRECISION()

    context = Context.init_context(TRAINING_NAME='DogsVsCats')
    train, train_len = ImageLabelFolderDataset.get_train_dataset(
        name="dogs-vs-cats", manual_dir="tmp")
    validation, validation_len = ImageLabelFolderDataset.get_validation_dataset(
        name="dogs-vs-cats", manual_dir="tmp")

    train = train.map(ImageDatasetUtil.map_max_square_crop_and_resize(
        IMAGE_SIZE, IMAGE_SIZE),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageAugument.randaugment_map(2, 4),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageDatasetUtil.image_reguralization(),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageDatasetUtil.one_hot(CLASS_NUM),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)