Esempio n. 1
0
def display(tfrecord_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir,
                                   max_label_size='full',
                                   repeat=False,
                                   shuffle_mb=0)
    tfutil.init_uninited_vars()

    idx = 0
    while True:
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if idx == 0:
            print('Displaying images')
            import cv2  # pip install opencv-python
            cv2.namedWindow('dataset_tool')
            print('Press SPACE or ENTER to advance, ESC to exit')
        print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist()))
        cv2.imshow('dataset_tool', images[0].transpose(
            1, 2, 0)[:, :, ::-1])  # CHW => HWC, RGB => BGR
        idx += 1
        if cv2.waitKey() == 27:
            break
    print('\nDisplayed %d images.' % idx)
Esempio n. 2
0
def extract(tfrecord_dir, output_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir,
                                   max_label_size=0,
                                   repeat=False,
                                   shuffle_mb=0)
    tfutil.init_uninited_vars()

    print('Extracting images to "%s"' % output_dir)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    idx = 0
    while True:
        if idx % 10 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if images.shape[1] == 1:
            img = PIL.Image.fromarray(images[0][0], 'L')
        else:
            img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
        img.save(os.path.join(output_dir, 'img%08d.png' % idx))
        idx += 1
    print('Extracted %d images.' % idx)
Esempio n. 3
0
def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels):
  max_label_size = 0 if ignore_labels else 'full'
  print('Loading dataset "%s"' % tfrecord_dir_a)
  tfutil.init_tf({'gpu_options.allow_growth': True})
  dset_a = dataset.TFRecordDataset(
      tfrecord_dir_a,
      max_label_size=max_label_size,
      repeat=False,
      shuffle_mb=0)
  print('Loading dataset "%s"' % tfrecord_dir_b)
  dset_b = dataset.TFRecordDataset(
      tfrecord_dir_b,
      max_label_size=max_label_size,
      repeat=False,
      shuffle_mb=0)
  tfutil.init_uninited_vars()

  print('Comparing datasets')
  idx = 0
  identical_images = 0
  identical_labels = 0
  while True:
    if idx % 100 == 0:
      print('%d\r' % idx, end='', flush=True)
    try:
      images_a, labels_a = dset_a.get_minibatch_np(1)
    except tf.errors.OutOfRangeError:
      images_a, labels_a = None, None
    try:
      images_b, labels_b = dset_b.get_minibatch_np(1)
    except tf.errors.OutOfRangeError:
      images_b, labels_b = None, None
    if images_a is None or images_b is None:
      if images_a is not None or images_b is not None:
        print('Datasets contain different number of images')
      break
    if images_a.shape == images_b.shape and np.all(images_a == images_b):
      identical_images += 1
    else:
      print('Image %d is different' % idx)
    if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b):
      identical_labels += 1
    else:
      print('Label %d is different' % idx)
    idx += 1
  print('Identical images: %d / %d' % (identical_images, idx))
  if not ignore_labels:
    print('Identical labels: %d / %d' % (identical_labels, idx))
Esempio n. 4
0
def extract(tfrecord_dir, output_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir,
                                   max_label_size=0,
                                   repeat=False,
                                   shuffle_mb=0)
    tfutil.init_uninited_vars()

    ### shifting kernel
    fc_x = 0.5
    fc_y = 0.5
    im_size = 128
    kernel_loc = 2.*np.pi*fc_x * np.arange(im_size).reshape((1, im_size, 1)) + \
        2.*np.pi*fc_y * np.arange(im_size).reshape((im_size, 1, 1))
    kernel_cos = np.cos(kernel_loc)

    print('Extracting images to "%s"' % output_dir)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    idx = 0
    while True:
        if idx % 10 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if images.shape[1] == 1:
            img = PIL.Image.fromarray(images[0][0], 'L')
        else:
            img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')

        ### shifting the image
        #img = np.asarray(img)
        #img_t = 2.* (img.astype(np.float32) / 255.) - 1.
        #img_sh = img_t * kernel_cos
        #img = (img_sh + 1.) / 2. * 255.
        #img = np.rint(img).clip(0, 255).astype(np.uint8)
        #img = PIL.Image.fromarray(img)

        img.save(os.path.join(output_dir, 'img%08d.png' % idx))
        idx += 1
    print('Extracted %d images.' % idx)
def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels):
    max_label_size = 0 if ignore_labels else 'full'
    print('Loading dataset "%s"' % tfrecord_dir_a)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset_a = dataset.TFRecordDataset(tfrecord_dir_a, max_label_size=max_label_size, repeat=False, shuffle_mb=0)
    print('Loading dataset "%s"' % tfrecord_dir_b)
    dset_b = dataset.TFRecordDataset(tfrecord_dir_b, max_label_size=max_label_size, repeat=False, shuffle_mb=0)
    tfutil.init_uninited_vars()
    
    print('Comparing datasets')
    idx = 0
    identical_images = 0
    identical_labels = 0
    while True:
        if idx % 100 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images_a, labels_a = dset_a.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            images_a, labels_a = None, None
        try:
            images_b, labels_b = dset_b.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            images_b, labels_b = None, None
        if images_a is None or images_b is None:
            if images_a is not None or images_b is not None:
                print('Datasets contain different number of images')
            break
        if images_a.shape == images_b.shape and np.all(images_a == images_b):
            identical_images += 1
        else:
            print('Image %d is different' % idx)
        if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b):
            identical_labels += 1
        else:
            print('Label %d is different' % idx)
        idx += 1
    print('Identical images: %d / %d' % (identical_images, idx))
    if not ignore_labels:
        print('Identical labels: %d / %d' % (identical_labels, idx))
def display(tfrecord_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle_mb=0)
    tfutil.init_uninited_vars()
    
    idx = 0
    while True:
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if idx == 0:
            print('Displaying images')
            import cv2 # pip install opencv-python
            cv2.namedWindow('dataset_tool')
            print('Press SPACE or ENTER to advance, ESC to exit')
        print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist()))
        cv2.imshow('dataset_tool', images[0].transpose(1, 2, 0)[:, :, ::-1]) # CHW => HWC, RGB => BGR
        idx += 1
        if cv2.waitKey() == 27:
            break
    print('\nDisplayed %d images.' % idx)
def extract(tfrecord_dir, output_dir):
    print('Loading dataset "%s"' % tfrecord_dir)
    tfutil.init_tf({'gpu_options.allow_growth': True})
    dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size=0, repeat=False, shuffle_mb=0)
    tfutil.init_uninited_vars()
    
    print('Extracting images to "%s"' % output_dir)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    idx = 0
    while True:
        if idx % 10 == 0:
            print('%d\r' % idx, end='', flush=True)
        try:
            images, labels = dset.get_minibatch_np(1)
        except tf.errors.OutOfRangeError:
            break
        if images.shape[1] == 1:
            img = PIL.Image.fromarray(images[0][0], 'L')
        else:
            img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
        img.save(os.path.join(output_dir, 'img%08d.png' % idx))
        idx += 1
    print('Extracted %d images.' % idx)
Esempio n. 8
0
def evaluate_metrics(run_id,
                     log,
                     metrics,
                     num_images,
                     real_passes,
                     minibatch_size=None):
    metric_class_names = {
        'swd': 'metrics.sliced_wasserstein.API',
        'fid': 'metrics.frechet_inception_distance.API',
        'is': 'metrics.inception_score.API',
        'msssim': 'metrics.ms_ssim.API',
    }

    # Locate training run and initialize logging.
    result_subdir = misc.locate_result_subdir(run_id)
    snapshot_pkls = misc.list_network_pkls(result_subdir, include_final=False)
    assert len(snapshot_pkls) >= 1
    log_file = os.path.join(result_subdir, log)
    print('Logging output to', log_file)
    misc.set_output_log_file(log_file)

    # Initialize dataset and select minibatch size.
    dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(
        result_subdir, verbose=True, shuffle_mb=0)
    if minibatch_size is None:
        minibatch_size = np.clip(8192 // dataset_obj.shape[1], 4, 256)

    # Initialize metrics.
    metric_objs = []
    for name in metrics:
        class_name = metric_class_names.get(name, name)
        print('Initializing %s...' % class_name)
        class_def = tfutil.import_obj(class_name)
        image_shape = [3] + dataset_obj.shape[1:]
        obj = class_def(num_images=num_images,
                        image_shape=image_shape,
                        image_dtype=np.uint8,
                        minibatch_size=minibatch_size)
        tfutil.init_uninited_vars()
        mode = 'warmup'
        obj.begin(mode)
        for idx in range(10):
            obj.feed(
                mode,
                np.random.randint(0,
                                  256,
                                  size=[minibatch_size] + image_shape,
                                  dtype=np.uint8))
        obj.end(mode)
        metric_objs.append(obj)

    # Print table header.
    print()
    print('%-10s%-12s' % ('Snapshot', 'Time_eval'), end='')
    for obj in metric_objs:
        for name, fmt in zip(obj.get_metric_names(),
                             obj.get_metric_formatting()):
            print('%-*s' % (len(fmt % 0), name), end='')
    print()
    print('%-10s%-12s' % ('---', '---'), end='')
    for obj in metric_objs:
        for fmt in obj.get_metric_formatting():
            print('%-*s' % (len(fmt % 0), '---'), end='')
    print()

    # Feed in reals.
    for title, mode in [('Reals', 'reals'), ('Reals2', 'fakes')][:real_passes]:
        print('%-10s' % title, end='')
        time_begin = time.time()
        labels = np.zeros([num_images, dataset_obj.label_size],
                          dtype=np.float32)
        [obj.begin(mode) for obj in metric_objs]
        for begin in range(0, num_images, minibatch_size):
            end = min(begin + minibatch_size, num_images)
            images, labels[begin:end] = dataset_obj.get_minibatch_np(end -
                                                                     begin)
            if mirror_augment:
                images = misc.apply_mirror_augment(images)
            if images.shape[1] == 1:
                images = np.tile(images, [1, 3, 1, 1])  # grayscale => RGB
            [obj.feed(mode, images) for obj in metric_objs]
        results = [obj.end(mode) for obj in metric_objs]
        print('%-12s' % misc.format_time(time.time() - time_begin), end='')
        for obj, vals in zip(metric_objs, results):
            for val, fmt in zip(vals, obj.get_metric_formatting()):
                print(fmt % val, end='')
        print()

    # Evaluate each network snapshot.
    for snapshot_idx, snapshot_pkl in enumerate(reversed(snapshot_pkls)):
        prefix = 'network-snapshot-'
        postfix = '.pkl'
        snapshot_name = os.path.basename(snapshot_pkl)
        assert snapshot_name.startswith(prefix) and snapshot_name.endswith(
            postfix)
        snapshot_kimg = int(snapshot_name[len(prefix):-len(postfix)])

        print('%-10d' % snapshot_kimg, end='')
        mode = 'fakes'
        [obj.begin(mode) for obj in metric_objs]
        time_begin = time.time()
        with tf.Graph().as_default(), tfutil.create_session(
                config.tf_config).as_default():
            G, D, Gs = misc.load_pkl(snapshot_pkl)
            for begin in range(0, num_images, minibatch_size):
                end = min(begin + minibatch_size, num_images)
                latents = misc.random_latents(end - begin, Gs)
                images = Gs.run(latents,
                                labels[begin:end],
                                num_gpus=config.num_gpus,
                                out_mul=127.5,
                                out_add=127.5,
                                out_dtype=np.uint8)
                if images.shape[1] == 1:
                    images = np.tile(images, [1, 3, 1, 1])  # grayscale => RGB
                [obj.feed(mode, images) for obj in metric_objs]
        results = [obj.end(mode) for obj in metric_objs]
        print('%-12s' % misc.format_time(time.time() - time_begin), end='')
        for obj, vals in zip(metric_objs, results):
            for val, fmt in zip(vals, obj.get_metric_formatting()):
                print(fmt % val, end='')
        print()
    print()
def evaluate_metrics_swd_distributions_training_trad_prog(
        run_id,
        network_dir_conv,
        network_dir_prog,
        log,
        metrics,
        num_images_per_group,
        num_groups,
        real_passes,
        minibatch_size=None):
    metric_class_names = {
        'swd_distri_training_trad_prog':
        'metrics.swd_distributions_training_trad_prog.API',
    }
    # Locate training run and initialize logging.
    result_subdir = misc.locate_result_subdir(run_id)
    log_file = os.path.join(result_subdir, log)
    print('Logging output to', log_file)
    misc.set_output_log_file(log_file)

    # Initialize dataset and select minibatch size.
    dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(
        result_subdir, verbose=True, shuffle_mb=0)

    # Initialize metrics.
    metric_objs = []
    for name in metrics:
        class_name = metric_class_names.get(name, name)
        print('Initializing %s...' % class_name)
        class_def = tfutil.import_obj(class_name)
        image_shape = [3] + dataset_obj.shape[1:]
        obj = class_def(image_shape=image_shape, image_dtype=np.uint8)
        tfutil.init_uninited_vars()
        metric_objs.append(obj)

        mode = 'fakes'
        [obj.begin(mode) for obj in metric_objs]
        images_real, labels = dataset_obj.get_minibatch_np(
            num_groups * num_images_per_group)

        with tf.Graph().as_default(), tfutil.create_session(
                config.tf_config).as_default():
            G, D, Gs = misc.load_pkl(network_dir_conv)
            #G, D, Gs = pickle.load(file)
            latents = misc.random_latents(num_groups * num_images_per_group,
                                          Gs)
            images = images_real
            for k in range(
                    10
            ):  # because Gs can not generate lots of (>3000 around) images at one time. Make sure /10 = int
                nn = int(num_groups * num_images_per_group / 10)
                images_fake = Gs.run(latents[k * nn:(k + 1) * nn],
                                     labels[k * nn:(k + 1) * nn],
                                     num_gpus=config.num_gpus,
                                     out_mul=127.5,
                                     out_add=127.5,
                                     out_dtype=np.uint8)
                images = np.concatenate((images, images_fake), axis=0)

        with tf.Graph().as_default(), tfutil.create_session(
                config.tf_config).as_default():
            G, D, Gs = misc.load_pkl(network_dir_prog)
            #  G, D, Gs = pickle.load(file)
            latents = misc.random_latents(num_groups * num_images_per_group,
                                          Gs)
            for k in range(
                    10
            ):  # because Gs can not generate lots of (>3000 around) images at one time. Make sure /10 = int
                nn = int(num_groups * num_images_per_group / 10)
                images_fake = Gs.run(latents[k * nn:(k + 1) * nn],
                                     labels[k * nn:(k + 1) * nn],
                                     num_gpus=config.num_gpus,
                                     out_mul=127.5,
                                     out_add=127.5,
                                     out_dtype=np.uint8)
                images = np.concatenate((images, images_fake), axis=0)

        if images.shape[1] == 1:
            images = np.tile(images, [1, 3, 1, 1])  # grayscale => RGB
        [
            obj.feed(mode, images, num_images_per_group, num_groups,
                     result_subdir) for obj in metric_objs
        ]
def evaluate_metrics_swd_distributions(run_id,
                                       log,
                                       metrics,
                                       num_images_per_group,
                                       num_groups,
                                       real_passes,
                                       minibatch_size=None):
    metric_class_names = {
        'swd_distri': 'metrics.swd_distributions.API',
    }
    # Locate training run and initialize logging.
    result_subdir = misc.locate_result_subdir(run_id)
    snapshot_pkls = misc.list_network_pkls(result_subdir, include_final=False)
    assert len(snapshot_pkls) >= 1
    log_file = os.path.join(result_subdir, log)
    print('Logging output to', log_file)
    misc.set_output_log_file(log_file)

    # Initialize dataset and select minibatch size.
    dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(
        result_subdir, verbose=True, shuffle_mb=0)

    # Initialize metrics.
    metric_objs = []
    for name in metrics:
        class_name = metric_class_names.get(name, name)
        print('Initializing %s...' % class_name)
        class_def = tfutil.import_obj(class_name)
        image_shape = [3] + dataset_obj.shape[1:]
        obj = class_def(image_shape=image_shape, image_dtype=np.uint8)
        tfutil.init_uninited_vars()
        metric_objs.append(obj)

    # Evaluate each network snapshot.
    for snapshot_idx, snapshot_pkl in enumerate(reversed(snapshot_pkls)):
        prefix = 'network-snapshot-'
        postfix = '.pkl'
        snapshot_name = os.path.basename(snapshot_pkl)
        assert snapshot_name.startswith(prefix) and snapshot_name.endswith(
            postfix)
        snapshot_kimg = int(snapshot_name[len(prefix):-len(postfix)])

        print('%-10d' % snapshot_kimg, end='')
        mode = 'fakes'
        [obj.begin(mode) for obj in metric_objs]

        images_real, labels = dataset_obj.get_minibatch_np(
            num_groups * num_images_per_group)

        with tf.Graph().as_default(), tfutil.create_session(
                config.tf_config).as_default():
            G, D, Gs = misc.load_pkl(snapshot_pkl)

            latents = misc.random_latents(num_groups * num_images_per_group,
                                          Gs)
            images = images_real
            for k in range(
                    10
            ):  # because Gs can not generate lots of (>3000 around) images at one time. Make sure /10 = int
                nn = int(num_groups * num_images_per_group / 10)
                images_fake = Gs.run(latents[k * nn:(k + 1) * nn],
                                     labels[k * nn:(k + 1) * nn],
                                     num_gpus=config.num_gpus,
                                     out_mul=127.5,
                                     out_add=127.5,
                                     out_dtype=np.uint8)
                images = np.concatenate((images, images_fake), axis=0)

            if images.shape[1] == 1:
                images = np.tile(images, [1, 3, 1, 1])  # grayscale => RGB
            [
                obj.feed(mode, images, num_images_per_group, num_groups,
                         snapshot_kimg, result_subdir) for obj in metric_objs
            ]
def evaluate_metrics(run_id, log, metrics, num_images, real_passes, minibatch_size=None):
    metric_class_names = {
        'swd':      'metrics.sliced_wasserstein.API',
        'fid':      'metrics.frechet_inception_distance.API',
        'is':       'metrics.inception_score.API',
        'msssim':   'metrics.ms_ssim.API',
    }

    # Locate training run and initialize logging.
    result_subdir = misc.locate_result_subdir(run_id)
    snapshot_pkls = misc.list_network_pkls(result_subdir, include_final=False)
    assert len(snapshot_pkls) >= 1
    log_file = os.path.join(result_subdir, log)
    print('Logging output to', log_file)
    misc.set_output_log_file(log_file)

    # Initialize dataset and select minibatch size.
    dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(result_subdir, verbose=True, shuffle_mb=0)
    if minibatch_size is None:
        minibatch_size = np.clip(8192 // dataset_obj.shape[1], 4, 256)

    # Initialize metrics.
    metric_objs = []
    for name in metrics:
        class_name = metric_class_names.get(name, name)
        print('Initializing %s...' % class_name)
        class_def = tfutil.import_obj(class_name)
        image_shape = [3] + dataset_obj.shape[1:]
        obj = class_def(num_images=num_images, image_shape=image_shape, image_dtype=np.uint8, minibatch_size=minibatch_size)
        tfutil.init_uninited_vars()
        mode = 'warmup'
        obj.begin(mode)
        for idx in range(10):
            obj.feed(mode, np.random.randint(0, 256, size=[minibatch_size]+image_shape, dtype=np.uint8))
        obj.end(mode)
        metric_objs.append(obj)

    # Print table header.
    print()
    print('%-10s%-12s' % ('Snapshot', 'Time_eval'), end='')
    for obj in metric_objs:
        for name, fmt in zip(obj.get_metric_names(), obj.get_metric_formatting()):
            print('%-*s' % (len(fmt % 0), name), end='')
    print()
    print('%-10s%-12s' % ('---', '---'), end='')
    for obj in metric_objs:
        for fmt in obj.get_metric_formatting():
            print('%-*s' % (len(fmt % 0), '---'), end='')
    print()

    # Feed in reals.
    for title, mode in [('Reals', 'reals'), ('Reals2', 'fakes')][:real_passes]:
        print('%-10s' % title, end='')
        time_begin = time.time()
        labels = np.zeros([num_images, dataset_obj.label_size], dtype=np.float32)
        [obj.begin(mode) for obj in metric_objs]
        for begin in range(0, num_images, minibatch_size):
            end = min(begin + minibatch_size, num_images)
            images, labels[begin:end] = dataset_obj.get_minibatch_np(end - begin)
            if mirror_augment:
                images = misc.apply_mirror_augment(images)
            if images.shape[1] == 1:
                images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
            [obj.feed(mode, images) for obj in metric_objs]
        results = [obj.end(mode) for obj in metric_objs]
        print('%-12s' % misc.format_time(time.time() - time_begin), end='')
        for obj, vals in zip(metric_objs, results):
            for val, fmt in zip(vals, obj.get_metric_formatting()):
                print(fmt % val, end='')
        print()

    # Evaluate each network snapshot.
    for snapshot_idx, snapshot_pkl in enumerate(reversed(snapshot_pkls)):
        prefix = 'network-snapshot-'; postfix = '.pkl'
        snapshot_name = os.path.basename(snapshot_pkl)
        assert snapshot_name.startswith(prefix) and snapshot_name.endswith(postfix)
        snapshot_kimg = int(snapshot_name[len(prefix) : -len(postfix)])

        print('%-10d' % snapshot_kimg, end='')
        mode ='fakes'
        [obj.begin(mode) for obj in metric_objs]
        time_begin = time.time()
        with tf.Graph().as_default(), tfutil.create_session(config.tf_config).as_default():
            G, D, Gs = misc.load_pkl(snapshot_pkl)
            for begin in range(0, num_images, minibatch_size):
                end = min(begin + minibatch_size, num_images)
                latents = misc.random_latents(end - begin, Gs)
                images = Gs.run(latents, labels[begin:end], num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_dtype=np.uint8)
                if images.shape[1] == 1:
                    images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
                [obj.feed(mode, images) for obj in metric_objs]
        results = [obj.end(mode) for obj in metric_objs]
        print('%-12s' % misc.format_time(time.time() - time_begin), end='')
        for obj, vals in zip(metric_objs, results):
            for val, fmt in zip(vals, obj.get_metric_formatting()):
                print(fmt % val, end='')
        print()
    print()