Esempio n. 1
0
    def test_convolution(self):
        #        print '\n\n*************************************************'
        #        print '           TEST CONVOLUTION'
        #        print '*************************************************'

        # fixed parameters
        bsize = 10  # batch size
        imshp = (28, 28)
        kshp = (5, 5)
        nkern = 5
        ssizes = ((1, 1), (2, 2), (3, 3), (4, 4))
        convmodes = ('full', 'valid')

        # symbolic stuff
        bias = tensor.dvector()
        kerns = tensor.dmatrix()
        input = tensor.dmatrix()
        rng = numpy.random.RandomState(3423489)
        filters = rng.randn(nkern, numpy.prod(kshp))
        biasvals = rng.randn(nkern)

        for mode in ('FAST_COMPILE', 'FAST_RUN'):
            ttot, ntot = 0, 0
            for conv_mode in convmodes:
                for ss in ssizes:

                    output, outshp = sp.convolve(kerns, kshp, nkern, input,\
                            imshp, ss, bias=bias, mode=conv_mode)
                    f = function([kerns, bias, input], output, mode=mode)

                    # now test with real values
                    img2d = numpy.arange(bsize * numpy.prod(imshp)).reshape(( \
                                                            bsize,) + imshp)
                    img1d = img2d.reshape(bsize, -1)

                    # create filters (need to be flipped to use convolve2d)
                    filtersflipped = numpy.zeros((nkern, ) + kshp)
                    for k in range(nkern):
                        it = reversed(filters[k, :])
                        for i in range(kshp[0]):
                            for j in range(kshp[1]):
                                filtersflipped[k, i, j] = next(it)

                    # compute output with convolve2d
                    if conv_mode == 'valid':
                        fulloutshp = numpy.array(imshp) - numpy.array(kshp) + 1
                    else:
                        fulloutshp = numpy.array(imshp) + numpy.array(kshp) - 1
                    ntime1 = time.time()
                    refout = numpy.zeros((bsize, ) + tuple(fulloutshp) +
                                         (nkern, ))
                    for b in range(bsize):
                        for n in range(nkern):
                            refout[b, ...,
                                   n] = convolve2d(img2d[b, :, :],
                                                   filtersflipped[n, ...],
                                                   conv_mode)
                    ntot += time.time() - ntime1

                    # need to flatten images
                    bench1 = refout[:, 0::ss[0],
                                    0::ss[1], :].reshape(bsize, -1, nkern)
                    bench1 += biasvals.reshape(1, 1, nkern)

                    # swap the last two dimensions (output needs to be nkern x outshp)
                    bench1 = numpy.swapaxes(bench1, 1, 2)
                    ttime1 = time.time()
                    out1 = f(filters, biasvals, img1d)
                    ttot += time.time() - ttime1
                    temp = bench1.flatten() - out1.flatten()

                    assert (temp < 1e-5).all()
Esempio n. 2
0
    def test_convolution(self):
#        print '\n\n*************************************************'
#        print '           TEST CONVOLUTION'
#        print '*************************************************'

        # fixed parameters
        bsize = 10     # batch size
        imshp = (28, 28)
        kshp = (5, 5)
        nkern = 5
        ssizes = ((1, 1), (2, 2), (3, 3), (4, 4))
        convmodes = ('full', 'valid')

        # symbolic stuff
        bias = tensor.dvector()
        kerns = tensor.dmatrix()
        input = tensor.dmatrix()
        rng = numpy.random.RandomState(3423489)
        filters = rng.randn(nkern, numpy.prod(kshp))
        biasvals = rng.randn(nkern)

        for mode in ('FAST_COMPILE', 'FAST_RUN'):  # , profmode):
            ttot, ntot = 0, 0
            for conv_mode in convmodes:
                for ss in ssizes:

                    output, outshp = sp.convolve(kerns, kshp, nkern, input,\
                            imshp, ss, bias=bias, mode=conv_mode)
                    f = function([kerns, bias, input], output, mode=mode)

                    # now test with real values
                    img2d = numpy.arange(bsize * numpy.prod(imshp)).reshape(( \
                                                            bsize,) + imshp)
                    img1d = img2d.reshape(bsize, -1)

                    # create filters (need to be flipped to use convolve2d)
                    filtersflipped = numpy.zeros((nkern,) + kshp)
                    for k in range(nkern):
                        it = reversed(filters[k, :])
                        for i in range(kshp[0]):
                            for j in range(kshp[1]):
                                filtersflipped[k,i,j] = next(it)

                    # compute output with convolve2d
                    if conv_mode == 'valid':
                        fulloutshp = numpy.array(imshp) - numpy.array(kshp) + 1
                    else:
                        fulloutshp = numpy.array(imshp) + numpy.array(kshp) - 1
                    ntime1 = time.time()
                    refout = numpy.zeros((bsize,)+tuple(fulloutshp)+(nkern,))
                    for b in range(bsize):
                        for n in range(nkern):
                            refout[b,...,n] = convolve2d(img2d[b,:,:],
                                                         filtersflipped[n,...],
                                                         conv_mode)
                    ntot += time.time() - ntime1

                    # need to flatten images
                    bench1 = refout[:,0::ss[0],0::ss[1],:].reshape(bsize,-1,nkern)
                    bench1 += biasvals.reshape(1,1,nkern)

                    # swap the last two dimensions (output needs to be nkern x outshp)
                    bench1 = numpy.swapaxes(bench1,1,2)
                    ttime1 = time.time()
                    out1 = f(filters, biasvals, img1d)
                    ttot += time.time() - ttime1
                    temp = bench1.flatten() - out1.flatten()

                    assert (temp < 1e-5).all()