Esempio n. 1
0
    def _testDS(
        self, op, array1=numpy.array([[1.0, 0], [3, 0], [0, 6]]), array2=numpy.asarray([[0, 2.0], [0, 4], [5, 0]])
    ):
        for mtype in _mtypes:
            a = mtype(array1)
            aR = as_sparse_variable(a)
            self.assertFalse(aR.data is a)
            self.assertTrue(_is_sparse(a))
            self.assertTrue(_is_sparse_variable(aR))

            b = numpy.asarray(array2)
            bR = tensor.as_tensor_variable(b)
            self.assertFalse(bR.data is b)
            self.assertTrue(_is_dense(b))
            self.assertTrue(_is_dense_variable(bR))

            apb = op(aR, bR)

            self.assertTrue(apb.type.dtype == aR.type.dtype, apb.type.dtype)
            self.assertTrue(apb.type.dtype == bR.type.dtype, apb.type.dtype)

            val = eval_outputs([apb])
            self.assertTrue(val.shape == (3, 2))
            if op is add:
                self.assertTrue(_is_dense_variable(apb))
                self.assertTrue(numpy.all(val == (a + b)))
                ans = numpy.array([[1.0, 2], [3, 4], [5, 6]])
                self.assertTrue(numpy.all(val == ans))
            elif op is mul:
                self.assertTrue(_is_sparse_variable(apb))
                ans = numpy.array([[1, 0], [9, 0], [0, 36]])
                self.assertTrue(numpy.all(val.todense() == (a.multiply(b))))
                self.assertTrue(numpy.all(val.todense() == ans))
Esempio n. 2
0
    def _testDS(self,
                op,
                array1=numpy.array([[1., 0], [3, 0], [0, 6]]),
                array2=numpy.asarray([[0, 2.], [0, 4], [5, 0]])):
        for mtype in _mtypes:
            a = mtype(array1)
            aR = as_sparse_variable(a)
            self.assertFalse(aR.data is a)
            self.assertTrue(_is_sparse(a))
            self.assertTrue(_is_sparse_variable(aR))

            b = numpy.asarray(array2)
            bR = tensor.as_tensor_variable(b)
            self.assertFalse(bR.data is b)
            self.assertTrue(_is_dense(b))
            self.assertTrue(_is_dense_variable(bR))

            apb = op(aR, bR)

            self.assertTrue(apb.type.dtype == aR.type.dtype, apb.type.dtype)
            self.assertTrue(apb.type.dtype == bR.type.dtype, apb.type.dtype)

            val = eval_outputs([apb])
            self.assertTrue(val.shape == (3, 2))
            if op is add:
                self.assertTrue(_is_dense_variable(apb))
                self.assertTrue(numpy.all(val == (a + b)))
                ans = numpy.array([[1., 2], [3, 4], [5, 6]])
                self.assertTrue(numpy.all(val == ans))
            elif op is mul:
                self.assertTrue(_is_sparse_variable(apb))
                ans = numpy.array([[1, 0], [9, 0], [0, 36]])
                self.assertTrue(numpy.all(val.todense() == (a.multiply(b))))
                self.assertTrue(numpy.all(val.todense() == ans))
Esempio n. 3
0
    def test_basicSD(self):
        for mtype in _mtypes:
            x = as_sparse_variable(mtype((500, 3)))
            x.data[(10, 1)] = 1
            x.data[(20, 2)] = 2
            self.assertTrue(_is_sparse_variable(x))

            y = tensor.as_tensor_variable([[1., 2], [3, 4], [2, 1]])
            self.assertTrue(_is_dense_variable(y))

            zop = true_dot(x, y)
            self.assertTrue(_is_sparse_variable(zop))
            z = eval_outputs([zop])
            self.assertTrue(_is_sparse(z))
            self.assertTrue(z.shape == (500, 2))
            self.assertTrue(type(z) is mtype)

            w = mtype((500, 2))
            w[(10, 0)] = 3.
            w[(20, 0)] = 4
            w[(10, 1)] = 4
            w[(20, 1)] = 2
            self.assertTrue(z.shape == w.shape)
            self.assertTrue(type(z) == type(w))
            self.assertTrue(z.dtype == w.dtype)

            #self.assertTrue(z == w)
            self.assertTrue(abs(z - w).nnz == 0)

            z = z.todense()
            w = w.todense()
            self.assertTrue((z == w).all() == True)
Esempio n. 4
0
    def test_basicSD(self):
        for mtype in _mtypes:
            x = as_sparse_variable(mtype((500,3)))
            x.data[(10, 1)] = 1
            x.data[(20, 2)] = 2
            self.assertTrue(_is_sparse_variable(x))

            y = tensor.as_tensor_variable([[1., 2], [3, 4], [2, 1]])
            self.assertTrue(_is_dense_variable(y))

            zop = true_dot(x,y)
            self.assertTrue(_is_sparse_variable(zop))
            z = eval_outputs([zop])
            self.assertTrue(_is_sparse(z))
            self.assertTrue(z.shape == (500,2))
            self.assertTrue(type(z) is mtype)

            w = mtype((500,2))
            w[(10, 0)] = 3.
            w[(20, 0)] = 4
            w[(10, 1)] = 4
            w[(20, 1)] = 2
            self.assertTrue(z.shape == w.shape)
            self.assertTrue(type(z) == type(w))
            self.assertTrue(z.dtype == w.dtype)

            #self.assertTrue(z == w)
            self.assertTrue(abs(z-w).nnz == 0)

            z = z.todense()
            w = w.todense()
            self.assertTrue((z == w).all() == True)
Esempio n. 5
0
 def grad(self, inp, grads):
     x, y = inp
     gz, = grads
     assert _is_sparse_variable(gz)
     assert _is_sparse_variable(x)
     rval = [true_dot(gz, y.T), true_dot(x.T, gz)]
     if _is_dense_variable(y):
         if self.grad_preserves_dense:
             rval[1] = dense_from_sparse(rval[1])
     return rval
Esempio n. 6
0
 def grad(self, inp, grads):
     x, y = inp
     gz, = grads
     assert _is_sparse_variable(gz)
     assert _is_sparse_variable(x)
     rval = [true_dot(gz, y.T), true_dot(x.T, gz)]
     if _is_dense_variable(y):
         if self.grad_preserves_dense:
             rval[1] = dense_from_sparse(rval[1])
     return rval
Esempio n. 7
0
    def test_basicDS(self):
        for mtype in _mtypes:
            x = as_sparse_variable(mtype((500, 3)))
            x.data[(10, 1)] = 1
            x.data[(20, 2)] = 2
            self.assertTrue(_is_sparse_variable(x))

            y = tensor.as_tensor_variable([[1., 2], [3, 4], [2, 1]])
            self.assertTrue(_is_dense_variable(y))

            x.data = x.data.T
            y.data = y.data.T

            zop = true_dot(y, x)
            zop = transpose(true_dot(y, x))
            self.assertTrue(_is_sparse_variable(zop))
            z = eval_outputs([zop])
            self.assertTrue(_is_sparse(z))
            self.assertTrue(z.shape == (500, 2))
            #            self.assertTrue(type(z) is mtype)

            w = mtype((500, 2))
            w[(10, 0)] = 3.
            w[(20, 0)] = 4
            w[(10, 1)] = 4
            w[(20, 1)] = 2
            self.assertTrue(z.shape == w.shape)
            # Type should switch from csr to csc and vice-versa, so don't perform this test
            #self.assertTrue(type(z) == type(w))
            self.assertTrue(z.dtype == w.dtype)

            # Type should switch from csr to csc and vice-versa, so don't perform this test
            #self.assertTrue(z == w)
            self.assertTrue(abs(z - w).nnz == 0)

            z = z.todense()
            w = w.todense()
            self.assertTrue((z == w).all() == True)
Esempio n. 8
0
    def test_basicDS(self):
        for mtype in _mtypes:
            x = as_sparse_variable(mtype((500,3)))
            x.data[(10, 1)] = 1
            x.data[(20, 2)] = 2
            self.assertTrue(_is_sparse_variable(x))

            y = tensor.as_tensor_variable([[1., 2], [3, 4], [2, 1]])
            self.assertTrue(_is_dense_variable(y))

            x.data = x.data.T
            y.data = y.data.T

            zop = true_dot(y, x)
            zop = transpose(true_dot(y, x))
            self.assertTrue(_is_sparse_variable(zop))
            z = eval_outputs([zop])
            self.assertTrue(_is_sparse(z))
            self.assertTrue(z.shape == (500,2))
#            self.assertTrue(type(z) is mtype)

            w = mtype((500,2))
            w[(10, 0)] = 3.
            w[(20, 0)] = 4
            w[(10, 1)] = 4
            w[(20, 1)] = 2
            self.assertTrue(z.shape == w.shape)
            # Type should switch from csr to csc and vice-versa, so don't perform this test
            #self.assertTrue(type(z) == type(w))
            self.assertTrue(z.dtype == w.dtype)

            # Type should switch from csr to csc and vice-versa, so don't perform this test
            #self.assertTrue(z == w)
            self.assertTrue(abs(z-w).nnz == 0)

            z = z.todense()
            w = w.todense()
            self.assertTrue((z == w).all() == True)
Esempio n. 9
0
        assert y.type.ndim == 1

        if x.type.dtype != y.type.dtype:
            raise NotImplementedError()
        return gof.Apply(self,
                         [x, y],
                         [SparseType(dtype=x.type.dtype,
                                 format=x.type.format).make_variable()])

    def perform(self, node, (x, y), (out, )):
        assert _is_sparse(x) and not _is_sparse(y)
        assert x.shape[1] == y.shape[0]
        out[0] = x.__class__(x.toarray() * y)

    def grad(self, (x, y), (gz,)):
        assert _is_sparse_variable(x) and _is_dense_variable(y)
        assert _is_sparse_variable(gz)
        return mul_s_v(gz, y), sp_sum(x * gz, axis=0, sparse_grad=True)
mul_s_v = MulSV()


class MulSVCSR(gof.Op):
    def __eq__(self, other):
        return (type(self) == type(other))

    def __hash__(self):
        return hash(type(self))

    def make_node(self, a_data, a_indices, a_indptr, b):
        assert b.type.ndim == 1
        return gof.Apply(self, [a_data, a_indices, a_indptr, b],
Esempio n. 10
0
        assert y.type.ndim == 1

        if x.type.dtype != y.type.dtype:
            raise NotImplementedError()
        return gof.Apply(self, [x, y], [
            SparseType(dtype=x.type.dtype,
                       format=x.type.format).make_variable()
        ])

    def perform(self, node, (x, y), (out, )):
        assert _is_sparse(x) and not _is_sparse(y)
        assert x.shape[1] == y.shape[0]
        out[0] = x.__class__(x.toarray() * y)

    def grad(self, (x, y), (gz, )):
        assert _is_sparse_variable(x) and _is_dense_variable(y)
        assert _is_sparse_variable(gz)
        return mul_s_v(gz, y), sp_sum(x * gz, axis=0, sparse_grad=True)


mul_s_v = MulSV()


class MulSVCSR(gof.Op):
    def __eq__(self, other):
        return (type(self) == type(other))

    def __hash__(self):
        return hash(type(self))

    def make_node(self, a_data, a_indices, a_indptr, b):