Esempio n. 1
0
 def score(self, x):
     prehidden = t.dot(
         x, self.parameters.hidden_weights) + self.parameters.hidden_biases
     hidden = t.clip(prehidden, -1, 1)
     score = t.dot(
         hidden,
         self.parameters.output_weights) + self.parameters.output_biases
     return score, prehidden
Esempio n. 2
0
    def functions(self, sequence_length):
        key = (sequence_length)

        if key not in self.cache:
            logging.info("Need to construct graph for sequence_length=%d..." % (sequence_length))

            # creating network input variable nodes
            correct_inputs = t.ftensor3("correct input")
            noise_inputs = t.ftensor3("noise input")
            learning_rate = t.fscalar("learning rate")

            # creating op nodes for firing the network
            correct_score, correct_prehidden = self.score(correct_inputs)
            noise_score, noise_prehidden = self.score(noise_inputs)

            # creating op nodes for the pairwise ranking cost function
            loss = t.clip(1 - correct_score + noise_score, 0, 1e999)
            total_loss = t.sum(loss)

            # the necessary cost function gradients
            parameters_gradient = grad(total_loss, list(self.parameters))
            correct_inputs_gradient = grad(total_loss, correct_inputs)
            noise_inputs_gradient = grad(total_loss, noise_inputs)

            # setting network inputs
            predict_inputs = [correct_inputs]
            train_inputs = [correct_inputs, noise_inputs, learning_rate]
            verbose_predict_inputs = predict_inputs

            # setting network outputs
            predict_outputs = [correct_score]
            train_outputs = [correct_inputs_gradient, noise_inputs_gradient, loss, correct_score, noise_score]
            verbose_predict_outputs = [correct_score, correct_prehidden]

            nnodes = len(theano.gof.graph.ops(predict_inputs, predict_outputs))
            logging.info("About to compile prediction function over %d ops [nodes]..." % nnodes)
            predict = theano.function(predict_inputs, predict_outputs, mode=COMPILE_MODE)
            logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

            nnodes = len(theano.gof.graph.ops(verbose_predict_inputs, verbose_predict_outputs))
            logging.info("About to compile verbose prediction function over %d ops [nodes]..." % nnodes)
            verbose_predict = theano.function(verbose_predict_inputs, verbose_predict_outputs, mode=COMPILE_MODE)
            logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

            nnodes = len(theano.gof.graph.ops(train_inputs, train_outputs))
            logging.info("About to compile training function over %d ops [nodes]..." % nnodes)
            train = theano.function(train_inputs, train_outputs, mode=COMPILE_MODE, updates=[(p, p - learning_rate * gp) for p, gp in zip(list(self.parameters), parameters_gradient)])
            logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

            self.cache[key] = (predict, train, verbose_predict)

        return self.cache[key]
Esempio n. 3
0
def hard_sigmoid(x):
    """An approximation of sigmoid.

    More approximate and faster than ultra_fast_sigmoid.

    Approx in 3 parts: 0, scaled linear, 1

    Removing the slope and shift does not make it faster.

    """
    slope = 0.2
    shift = 0.5
    x = (x * slope) + shift
    x = tensor.clip(x, 0, 1)
    return x
Esempio n. 4
0
def hard_sigmoid(x):
    """An approximation of sigmoid.

    More approximate and faster than ultra_fast_sigmoid.

    Approx in 3 parts: 0, scaled linear, 1

    Removing the slope and shift does not make it faster.

    """
    slope = 0.2
    shift = 0.5
    x = (x * slope) + shift
    x = tensor.clip(x, 0, 1)
    return x
Esempio n. 5
0
def hard_sigmoid(x):
    """An approximation of sigmoid.

    More approximate and faster than ultra_fast_sigmoid.

    Approx in 3 parts: 0, scaled linear, 1

    Removing the slope and shift does not make it faster.

    """
    # Use the same dtype as determined by "upgrade_to_float",
    # and perform computation in that dtype.
    out_dtype = scalar.upgrade_to_float(scalar.Scalar(dtype=x.dtype))[0].dtype
    slope = tensor.constant(0.2, dtype=out_dtype)
    shift = tensor.constant(0.5, dtype=out_dtype)
    x = (x * slope) + shift
    x = tensor.clip(x, 0, 1)
    return x
Esempio n. 6
0
    def functions(self, sequence_length):
        key = (sequence_length)

        if key not in self.cache:
            logging.info("Need to construct graph for sequence_length=%d..." %
                         (sequence_length))

            # creating network input variable nodes
            correct_inputs = t.ftensor3("correct input")
            noise_inputs = t.ftensor3("noise input")
            learning_rate = t.fscalar("learning rate")

            # creating op nodes for firing the network
            correct_score, correct_prehidden = self.score(correct_inputs)
            noise_score, noise_prehidden = self.score(noise_inputs)

            # creating op nodes for the pairwise ranking cost function
            loss = t.clip(1 - correct_score + noise_score, 0, 1e999)
            total_loss = t.sum(loss)

            # the necessary cost function gradients
            parameters_gradient = grad(total_loss, list(self.parameters))
            correct_inputs_gradient = grad(total_loss, correct_inputs)
            noise_inputs_gradient = grad(total_loss, noise_inputs)

            # setting network inputs
            predict_inputs = [correct_inputs]
            train_inputs = [correct_inputs, noise_inputs, learning_rate]
            verbose_predict_inputs = predict_inputs

            # setting network outputs
            predict_outputs = [correct_score]
            train_outputs = [
                correct_inputs_gradient, noise_inputs_gradient, loss,
                correct_score, noise_score
            ]
            verbose_predict_outputs = [correct_score, correct_prehidden]

            nnodes = len(theano.gof.graph.ops(predict_inputs, predict_outputs))
            logging.info(
                "About to compile prediction function over %d ops [nodes]..." %
                nnodes)
            predict = theano.function(predict_inputs,
                                      predict_outputs,
                                      mode=COMPILE_MODE)
            logging.info("...done constructing graph for sequence_length=%d" %
                         (sequence_length))

            nnodes = len(
                theano.gof.graph.ops(verbose_predict_inputs,
                                     verbose_predict_outputs))
            logging.info(
                "About to compile verbose prediction function over %d ops [nodes]..."
                % nnodes)
            verbose_predict = theano.function(verbose_predict_inputs,
                                              verbose_predict_outputs,
                                              mode=COMPILE_MODE)
            logging.info("...done constructing graph for sequence_length=%d" %
                         (sequence_length))

            nnodes = len(theano.gof.graph.ops(train_inputs, train_outputs))
            logging.info(
                "About to compile training function over %d ops [nodes]..." %
                nnodes)
            train = theano.function(
                train_inputs,
                train_outputs,
                mode=COMPILE_MODE,
                updates=[(p, p - learning_rate * gp) for p, gp in zip(
                    list(self.parameters), parameters_gradient)])
            logging.info("...done constructing graph for sequence_length=%d" %
                         (sequence_length))

            self.cache[key] = (predict, train, verbose_predict)

        return self.cache[key]
Esempio n. 7
0
 def score(self,x):
     prehidden = t.dot(x, self.parameters.hidden_weights) + self.parameters.hidden_biases
     hidden = t.clip(prehidden, -1, 1)
     score = t.dot(hidden, self.parameters.output_weights) + self.parameters.output_biases
     return score, prehidden